BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25386680)

  • 21. Plant Root Exudates Are Involved in
    Wang N; Wang L; Zhu K; Hou S; Chen L; Mi D; Gui Y; Qi Y; Jiang C; Guo JH
    Front Microbiol; 2019; 10():98. PubMed ID: 30766525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway.
    Niu D; Wang X; Wang Y; Song X; Wang J; Guo J; Zhao H
    Biochem Biophys Res Commun; 2016 Jan; 469(1):120-125. PubMed ID: 26616055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of two new genes conferring resistance to Colletotrichum acutatum in Capsicum baccatum.
    Mahasuk P; Taylor PW; Mongkolporn O
    Phytopathology; 2009 Sep; 99(9):1100-4. PubMed ID: 19671013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plant Disease Resistance-Related Pathways Recruit Beneficial Bacteria by Remodeling Root Exudates upon Bacillus cereus AR156 Treatment.
    Yang B; Zheng M; Dong W; Xu P; Zheng Y; Yang W; Luo Y; Guo J; Niu D; Yu Y; Jiang C
    Microbiol Spectr; 2023 Feb; 11(2):e0361122. PubMed ID: 36786562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The
    Son S; Kim S; Lee KS; Oh J; Choi I; Do JW; Yoon JB; Han J; Park SR
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First report of
    Castro JF; Millas P; Cisterna-Oyarce V; Carrasco J; Santelices C; Muñoz-Reyes V; Guerra M; Barra-Bucarei L; France A
    Plant Dis; 2022 Aug; ():. PubMed ID: 36044646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways.
    Niu DD; Liu HX; Jiang CH; Wang YP; Wang QY; Jin HL; Guo JH
    Mol Plant Microbe Interact; 2011 May; 24(5):533-42. PubMed ID: 21198361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. β-Aminobutyric Acid Priming Acquisition and Defense Response of Mango Fruit to
    Li T; Fan P; Yun Z; Jiang G; Zhang Z; Jiang Y
    Cells; 2019 Sep; 8(9):. PubMed ID: 31487826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The mannose-binding lectin gene FaMBL1 is involved in the resistance of unripe strawberry fruits to Colletotrichum acutatum.
    Guidarelli M; Zoli L; Orlandini A; Bertolini P; Baraldi E
    Mol Plant Pathol; 2014 Oct; 15(8):832-40. PubMed ID: 24690196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First Report of
    Cara M; Iliadi MK; Lagogianni CS; Paplomatas E; Merkuri J; Tsitsigiannis DI
    Plant Dis; 2020 Sep; ():. PubMed ID: 32924849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of Bacillus cereus NRKT on grape ripe rot disease through resveratrol synthesis in berry skin.
    Aoki T; Aoki Y; Ishiai S; Otoguro M; Suzuki S
    Pest Manag Sci; 2017 Jan; 73(1):174-180. PubMed ID: 27038426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The spo0A-sinI-sinR Regulatory Circuit Plays an Essential Role in Biofilm Formation, Nematicidal Activities, and Plant Protection in Bacillus cereus AR156.
    Xu S; Yang N; Zheng S; Yan F; Jiang C; Yu Y; Guo J; Chai Y; Chen Y
    Mol Plant Microbe Interact; 2017 Aug; 30(8):603-619. PubMed ID: 28430084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and characterization of a new Bacillus atrophaeus strain B5 as biocontrol agent of postharvest anthracnose disease in soursop (Annona muricata) and avocado (Persea americana).
    Guardado-Valdivia L; Tovar-Pérez E; Chacón-López A; López-García U; Gutiérrez-Martínez P; Stoll A; Aguilera S
    Microbiol Res; 2018 May; 210():26-32. PubMed ID: 29625655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcription factors WRKY70 and WRKY11 served as regulators in rhizobacterium Bacillus cereus AR156-induced systemic resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis.
    Jiang CH; Huang ZY; Xie P; Gu C; Li K; Wang DC; Yu YY; Fan ZH; Wang CJ; Wang YP; Guo YH; Guo JH
    J Exp Bot; 2016 Jan; 67(1):157-74. PubMed ID: 26433201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Role of Colletotrichum spp. in Postharvest Anthracnose of Citrus and Survival of C. acutatum on Fruit.
    Timmer LW; Brown GE; Zitko SE
    Plant Dis; 1998 Apr; 82(4):415-418. PubMed ID: 30856890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elucidation of the disease cycle of olive anthracnose caused by Colletotrichum acutatum.
    Moral J; de Oliveira R; Trapero A
    Phytopathology; 2009 May; 99(5):548-56. PubMed ID: 19351251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fruit Resistance to Colletotrichum acutatum in Strawberries.
    Denoyes-Rothan B; Lafargue M; Guerin G; Clerjeau M
    Plant Dis; 1999 Jun; 83(6):549-553. PubMed ID: 30849831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antifungal Activity of Volatile Organic Compounds Produced by
    He CN; Ye WQ; Zhu YY; Zhou WW
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32722108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-time PCR assay for Colletotrichum acutatum sensu stricto quantification in olive fruit samples.
    Azevedo-Nogueira F; Gomes S; Lino A; Carvalho T; Martins-Lopes P
    Food Chem; 2021 Mar; 339():127858. PubMed ID: 32829246
    [TBL] [Abstract][Full Text] [Related]  

  • 40. First Report of Anthracnose Fruit Rot Caused by Colletotrichum fioriniae on Litchi in China.
    Ling JF; Peng A; Jiang Z; Xi P; Song X; Cheng B; Cui Y; Chen X
    Plant Dis; 2020 Nov; ():. PubMed ID: 33185520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.