These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 25386786)
21. Facile fabrication of a C60-polydopamine-graphene nanohybrid for single light induced photothermal and photodynamic therapy. Hu Z; Zhao F; Wang Y; Huang Y; Chen L; Li N; Li J; Li Z; Yi G Chem Commun (Camb); 2014 Sep; 50(74):10815-8. PubMed ID: 25089303 [TBL] [Abstract][Full Text] [Related]
22. Bovine serum albumin nanospheres synchronously encapsulating "gold selenium/gold" nanoparticles and photosensitizer for high-efficiency cancer phototherapy. Yu C; Wo F; Shao Y; Dai X; Chu M Appl Biochem Biotechnol; 2013 Mar; 169(5):1566-78. PubMed ID: 23322252 [TBL] [Abstract][Full Text] [Related]
23. Biological Functionalization of Conjugated Polymer Nanoparticles for Targeted Imaging and Photodynamic Killing of Tumor Cells. Feng L; Zhu J; Wang Z ACS Appl Mater Interfaces; 2016 Aug; 8(30):19364-70. PubMed ID: 27406913 [TBL] [Abstract][Full Text] [Related]
24. Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms. Pérez-Hernández M; Del Pino P; Mitchell SG; Moros M; Stepien G; Pelaz B; Parak WJ; Gálvez EM; Pardo J; de la Fuente JM ACS Nano; 2015 Jan; 9(1):52-61. PubMed ID: 25493329 [TBL] [Abstract][Full Text] [Related]
25. Coating urchinlike gold nanoparticles with polypyrrole thin shells to produce photothermal agents with high stability and photothermal transduction efficiency. Li J; Han J; Xu T; Guo C; Bu X; Zhang H; Wang L; Sun H; Yang B Langmuir; 2013 Jun; 29(23):7102-10. PubMed ID: 23692027 [TBL] [Abstract][Full Text] [Related]
26. Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. Park H; Yang J; Lee J; Haam S; Choi IH; Yoo KH ACS Nano; 2009 Oct; 3(10):2919-26. PubMed ID: 19772302 [TBL] [Abstract][Full Text] [Related]
27. Photodynamic therapy of Glioblastoma cells using doped conjugated polymer nanoparticles: An in vitro comparative study based on redox status. Caverzán MD; Beaugé L; Chesta CA; Palacios RE; Ibarra LE J Photochem Photobiol B; 2020 Nov; 212():112045. PubMed ID: 33022469 [TBL] [Abstract][Full Text] [Related]
28. Gold Nanoparticles: Recent Advances in the Biomedical Applications. Zhang X Cell Biochem Biophys; 2015 Jul; 72(3):771-5. PubMed ID: 25663504 [TBL] [Abstract][Full Text] [Related]
29. Circulating tumor-cell-targeting Au-nanocage-mediated bimodal phototherapeutic properties enriched by magnetic nanocores. Chiang CS; Kao YC; Webster TJ; Shyu WC; Cheng HW; Liu TY; Chen SY J Mater Chem B; 2020 Jul; 8(25):5460-5471. PubMed ID: 32462165 [TBL] [Abstract][Full Text] [Related]
30. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release. Jin Y Acc Chem Res; 2014 Jan; 47(1):138-48. PubMed ID: 23992824 [TBL] [Abstract][Full Text] [Related]
31. Bioconjugated gold nanoparticles accelerate the growth of new blood vessels through redox signaling. Nethi SK; Mukherjee S; Veeriah V; Barui AK; Chatterjee S; Patra CR Chem Commun (Camb); 2014 Nov; 50(92):14367-70. PubMed ID: 25298204 [TBL] [Abstract][Full Text] [Related]
32. Large payloads of gold nanoparticles into the polyamine network core of stimuli-responsive PEGylated nanogels for selective and noninvasive cancer photothermal therapy. Nakamura T; Tamura A; Murotani H; Oishi M; Jinji Y; Matsuishi K; Nagasaki Y Nanoscale; 2010 May; 2(5):739-46. PubMed ID: 20648319 [TBL] [Abstract][Full Text] [Related]
33. SERS-encoded nanogapped plasmonic nanoparticles: growth of metallic nanoshell by templating redox-active polymer brushes. Song J; Duan B; Wang C; Zhou J; Pu L; Fang Z; Wang P; Lim TT; Duan H J Am Chem Soc; 2014 May; 136(19):6838-41. PubMed ID: 24773367 [TBL] [Abstract][Full Text] [Related]
34. Gold nanostars mediated combined photothermal and photodynamic therapy and X-ray imaging for cancer theranostic applications. Wang L; Meng D; Hao Y; Zhao Y; Li D; Zhang B; Zhang Y; Zhang Z J Biomater Appl; 2015 Nov; 30(5):547-57. PubMed ID: 26202890 [TBL] [Abstract][Full Text] [Related]
36. The significant impact of polydopamine on the catalytic performance of the carried Au nanoparticles. Ma A; Xie Y; Xu J; Zeng H; Xu H Chem Commun (Camb); 2015 Jan; 51(8):1469-71. PubMed ID: 25494408 [TBL] [Abstract][Full Text] [Related]
37. Multifunctional AS1411-functionalized fluorescent gold nanoparticles for targeted cancer cell imaging and efficient photodynamic therapy. Ai J; Xu Y; Lou B; Li D; Wang E Talanta; 2014 Jan; 118():54-60. PubMed ID: 24274270 [TBL] [Abstract][Full Text] [Related]
38. Polydopamine-Enabled Approach toward Tailored Plasmonic Nanogapped Nanoparticles: From Nanogap Engineering to Multifunctionality. Zhou J; Xiong Q; Ma J; Ren J; Messersmith PB; Chen P; Duan H ACS Nano; 2016 Dec; 10(12):11066-11075. PubMed ID: 28024348 [TBL] [Abstract][Full Text] [Related]
39. Electrostatic repulsion-controlled formation of polydopamine-gold Janus particles. Xu H; Liu X; Su G; Zhang B; Wang D Langmuir; 2012 Sep; 28(36):13060-5. PubMed ID: 22905694 [TBL] [Abstract][Full Text] [Related]
40. A new photothermal therapeutic agent: core-free nanostructured Au x Ag1-x dendrites. Hu KW; Huang CC; Hwu JR; Su WC; Shieh DB; Yeh CS Chemistry; 2008; 14(10):2956-64. PubMed ID: 18335446 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]