These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25386841)

  • 1. Paracellular calcium transport across renal and intestinal epithelia.
    Alexander RT; Rievaj J; Dimke H
    Biochem Cell Biol; 2014 Dec; 92(6):467-80. PubMed ID: 25386841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Na⁺/H⁺ exchanger isoform 3 is required for active paracellular and transcellular Ca²⁺ transport across murine cecum.
    Rievaj J; Pan W; Cordat E; Alexander RT
    Am J Physiol Gastrointest Liver Physiol; 2013 Aug; 305(4):G303-13. PubMed ID: 23764894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological roles of claudins in kidney tubule paracellular transport.
    Muto S
    Am J Physiol Renal Physiol; 2017 Jan; 312(1):F9-F24. PubMed ID: 27784693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic metabolic acidosis stimulated transcellular and solvent drag-induced calcium transport in the duodenum of female rats.
    Charoenphandhu N; Tudpor K; Pulsook N; Krishnamra N
    Am J Physiol Gastrointest Liver Physiol; 2006 Sep; 291(3):G446-55. PubMed ID: 16675746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corticomedullary difference in the effects of dietary Ca²⁺ on tight junction properties in thick ascending limbs of Henle's loop.
    Plain A; Wulfmeyer VC; Milatz S; Klietz A; Hou J; Bleich M; Himmerkus N
    Pflugers Arch; 2016 Feb; 468(2):293-303. PubMed ID: 26497703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of transcellular and paracellular calcium and magnesium transport proteins in renal and intestinal epithelia during lactation.
    Beggs MR; Appel I; Svenningsen P; Skjødt K; Alexander RT; Dimke H
    Am J Physiol Renal Physiol; 2017 Sep; 313(3):F629-F640. PubMed ID: 28539338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The epithelial sodium/proton exchanger, NHE3, is necessary for renal and intestinal calcium (re)absorption.
    Pan W; Borovac J; Spicer Z; Hoenderop JG; Bindels RJ; Shull GE; Doschak MR; Cordat E; Alexander RT
    Am J Physiol Renal Physiol; 2012 Apr; 302(8):F943-56. PubMed ID: 21937605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular aspects of intestinal calcium absorption.
    Diaz de Barboza G; Guizzardi S; Tolosa de Talamoni N
    World J Gastroenterol; 2015 Jun; 21(23):7142-54. PubMed ID: 26109800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paracellular calcium transport across the small intestine.
    Karbach U
    J Nutr; 1992 Mar; 122(3 Suppl):672-7. PubMed ID: 1542029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of renal calcium transport.
    Friedman PA
    Exp Nephrol; 2000; 8(6):343-50. PubMed ID: 11014931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Claudin-2 and claudin-12 form independent, complementary pores required to maintain calcium homeostasis.
    Beggs MR; Young K; Pan W; O'Neill DD; Saurette M; Plain A; Rievaj J; Doschak MR; Cordat E; Dimke H; Alexander RT
    Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34810264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of claudins in renal calcium handling.
    Negri AL
    Nefrologia; 2015; 35(4):347-52. PubMed ID: 26306950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructural and immunohistochemical localization of plasma membrane Ca2+-ATPase 4 in Ca2+-transporting epithelia.
    Alexander RT; Beggs MR; Zamani R; Marcussen N; Frische S; Dimke H
    Am J Physiol Renal Physiol; 2015 Oct; 309(7):F604-16. PubMed ID: 26180241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paracellular transport and energy utilization in the renal tubule.
    Yu ASL
    Curr Opin Nephrol Hypertens; 2017 Sep; 26(5):398-404. PubMed ID: 28617689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prolactin-stimulated transepithelial calcium transport in duodenum and Caco-2 monolayer are mediated by the phosphoinositide 3-kinase pathway.
    Jantarajit W; Thongon N; Pandaranandaka J; Teerapornpuntakit J; Krishnamra N; Charoenphandhu N
    Am J Physiol Endocrinol Metab; 2007 Jul; 293(1):E372-84. PubMed ID: 17488805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Claudins and nephrolithiasis.
    Plain A; Alexander RT
    Curr Opin Nephrol Hypertens; 2018 Jul; 27(4):268-276. PubMed ID: 29782346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TRPV6 and Ca
    Beggs MR; Lee JJ; Busch K; Raza A; Dimke H; Weissgerber P; Engel J; Flockerzi V; Alexander RT
    Cell Mol Gastroenterol Hepatol; 2019; 8(4):625-642. PubMed ID: 31398491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segmental heterogeneity of cellular and paracellular calcium transport across the rat duodenum and jejunum.
    Karbach U
    Gastroenterology; 1991 Jan; 100(1):47-58. PubMed ID: 1898496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model of calcium transport and regulation in the proximal tubule.
    Edwards A; Bonny O
    Am J Physiol Renal Physiol; 2018 Oct; 315(4):F942-F953. PubMed ID: 29846115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AVP dynamically increases paracellular Na
    Himmerkus N; Plain A; Marques RD; Sonntag SR; Paliege A; Leipziger J; Bleich M
    Pflugers Arch; 2017 Jan; 469(1):149-158. PubMed ID: 27924355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.