These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 25387084)

  • 41. Fabrication and characterization of multi-biomarker optimized tissue-mimicking phantoms for multi-modal optical spectroscopy.
    Gautam R; Mac Mahon D; Eager G; Ma H; Guadagno CN; Andersson-Engels S; Konugolu Venkata Sekar S
    Analyst; 2023 Sep; 148(19):4768-4776. PubMed ID: 37665320
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optical phantom materials for near infrared laser photocoagulation studies.
    Iizuka MN; Sherar MD; Vitkin IA
    Lasers Surg Med; 1999; 25(2):159-69. PubMed ID: 10455223
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Near-infrared frequency domain system and fast inverse Monte Carlo algorithm for endoscopic measurement of tubular tissue.
    Zhao H; Zhou X; Fan Y; Gao F
    J Xray Sci Technol; 2011; 19(1):57-68. PubMed ID: 21422589
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tutorial on methods for estimation of optical absorption and scattering properties of tissue.
    Tao R; Gröhl J; Hacker L; Pifferi A; Roblyer D; Bohndiek SE
    J Biomed Opt; 2024 Jun; 29(6):060801. PubMed ID: 38864093
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accurate optical parameter extraction procedure for broadband near-infrared spectroscopy of brain matter.
    Sultan E; Najafizadeh L; Gandjbakhche AH; Pourrezaei K; Daryoush A
    J Biomed Opt; 2013 Jan; 18(1):17008. PubMed ID: 23322361
    [TBL] [Abstract][Full Text] [Related]  

  • 46. BIAN: A Multilayer Microfluidic-Based Tissue-Mimicking Phantom for Near-Infrared Imaging.
    Li T; Kalyanov A; Wolf M; Ackermann M; Russomanno E; Jiang J; Mata ADC
    Adv Exp Med Biol; 2023; 1438():179-183. PubMed ID: 37845458
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phantom materials mimicking the optical properties in the near infrared range for non-invasive fetal pulse oximetry.
    Ley S; Stadthalter M; Link D; Laqua D; Husar P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1432-5. PubMed ID: 25570237
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In Vitro Comparisons of Near-Infrared Spectroscopy Oximeters: Impact of Slow Changes in Scattering of Liquid Phantoms.
    Ostojic D; Kleiser S; Nasseri N; Isler H; Andresen B; Wabnitz H; Karen T; Scholkmann F; Wolf M
    Adv Exp Med Biol; 2018; 1072():375-379. PubMed ID: 30178374
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy.
    Yazdi HS; O'Sullivan TD; Leproux A; Hill B; Durkin A; Telep S; Lam J; Yazdi SS; Police AM; Carroll RM; Combs FJ; Strömberg T; Yodh AG; Tromberg BJ
    J Biomed Opt; 2017 Apr; 22(4):45003. PubMed ID: 28384703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Determination of optical properties of turbid media spanning visible and near-infrared regimes via spatially modulated quantitative spectroscopy.
    Saager RB; Cuccia DJ; Durkin AJ
    J Biomed Opt; 2010; 15(1):017012. PubMed ID: 20210486
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy.
    Wagnières G; Cheng S; Zellweger M; Utke N; Braichotte D; Ballini JP; van den Bergh H
    Phys Med Biol; 1997 Jul; 42(7):1415-26. PubMed ID: 9253049
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Estimating the absorption coefficient of the bottom layer in four-layered turbid mediums based on the time-domain depth sensitivity of near-infrared light reflectance.
    Sato C; Shimada M; Tanikawa Y; Hoshi Y
    J Biomed Opt; 2013 Sep; 18(9):097005. PubMed ID: 24057194
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phase-contrast imaging of tissue using near-infrared diffusing light.
    Jiang H; Xu Y
    Med Phys; 2003 Jun; 30(6):1048-51. PubMed ID: 12852528
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Feasibility of spatial frequency-domain imaging for monitoring palpable breast lesions.
    Robbins CM; Raghavan G; Antaki JF; Kainerstorfer JM
    J Biomed Opt; 2017 Aug; 22(12):1-9. PubMed ID: 28831792
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multi-frequency spatial frequency domain imaging: a depth-resolved optical scattering model to isolate scattering contrast in thin layers of skin.
    Belcastro L; Jonasson H; Saager RB
    J Biomed Opt; 2024 Apr; 29(4):046003. PubMed ID: 38650893
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties.
    Vogt WC; Jia C; Wear KA; Garra BS; Joshua Pfefer T
    J Biomed Opt; 2016 Oct; 21(10):101405. PubMed ID: 26886681
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Accuracy of retrieving optical properties from liquid tissue phantoms using a single integrating sphere.
    Vincely VD; Vishwanath K
    Appl Opt; 2022 Jan; 61(2):375-385. PubMed ID: 35200872
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Geometrically complex 3D-printed phantoms for diffuse optical imaging.
    Dempsey LA; Persad M; Powell S; Chitnis D; Hebden JC
    Biomed Opt Express; 2017 Mar; 8(3):1754-1762. PubMed ID: 28663863
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Compressed single pixel imaging in the spatial frequency domain.
    Torabzadeh M; Park IY; Bartels RA; Durkin AJ; Tromberg BJ
    J Biomed Opt; 2017 Mar; 22(3):30501. PubMed ID: 28300272
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparation and characterization of polyurethane optical phantoms.
    Moffitt T; Chen YC; Prahl SA
    J Biomed Opt; 2006; 11(4):041103. PubMed ID: 16965131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.