BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25387959)

  • 1. Quantum calculation of protein NMR chemical shifts based on the automated fragmentation method.
    Zhu T; Zhang JZ; He X
    Adv Exp Med Biol; 2015; 827():49-70. PubMed ID: 25387959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragment density functional theory calculation of NMR chemical shifts for proteins with implicit solvation.
    Zhu T; He X; Zhang JZ
    Phys Chem Chem Phys; 2012 Jun; 14(21):7837-45. PubMed ID: 22314755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules.
    Swails J; Zhu T; He X; Case DA
    J Biomol NMR; 2015 Oct; 63(2):125-39. PubMed ID: 26232926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach.
    He X; Wang B; Merz KM
    J Phys Chem B; 2009 Jul; 113(30):10380-8. PubMed ID: 19575540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Fragmentation QM/MM Calculation of Amide Proton Chemical Shifts in Proteins with Explicit Solvent Model.
    Zhu T; Zhang JZ; He X
    J Chem Theory Comput; 2013 Apr; 9(4):2104-14. PubMed ID: 26583557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Fragmentation QM/MM Calculation of NMR Chemical Shifts for Protein-Ligand Complexes.
    Jin X; Zhu T; Zhang JZH; He X
    Front Chem; 2018; 6():150. PubMed ID: 29868556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated fragmentation quantum mechanical calculation of
    Shi M; Jin X; Wan Z; He X
    J Chem Phys; 2021 Feb; 154(6):064502. PubMed ID: 33588539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations.
    Kraus J; Gupta R; Yehl J; Lu M; Case DA; Gronenborn AM; Akke M; Polenova T
    J Phys Chem B; 2018 Mar; 122(11):2931-2939. PubMed ID: 29498857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward the quantum chemical calculation of nuclear magnetic resonance chemical shifts of proteins.
    Frank A; Onila I; Möller HM; Exner TE
    Proteins; 2011 Jul; 79(7):2189-202. PubMed ID: 21557322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment.
    Jose KV; Raghavachari K
    J Chem Theory Comput; 2017 Mar; 13(3):1147-1158. PubMed ID: 28194972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Fragmentation Quantum Mechanical Calculation of
    Zhang J; Kriebel CN; Wan Z; Shi M; Glaubitz C; He X
    J Chem Theory Comput; 2023 Oct; 19(20):7405-7422. PubMed ID: 37788419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An automated framework for NMR chemical shift calculations of small organic molecules.
    Yesiltepe Y; Nuñez JR; Colby SM; Thomas DG; Borkum MI; Reardon PN; Washton NM; Metz TO; Teeguarden JG; Govind N; Renslow RS
    J Cheminform; 2018 Oct; 10(1):52. PubMed ID: 30367288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Fast QM/MM (Quantum Mechanical/Molecular Mechanical) Approach to Calculate Nuclear Magnetic Resonance Chemical Shifts for Macromolecules.
    Wang B; Merz KM
    J Chem Theory Comput; 2006 Jan; 2(1):209-15. PubMed ID: 26626395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction of erroneously packed protein's side chains in the NMR structure based on ab initio chemical shift calculations.
    Zhu T; Zhang JZ; He X
    Phys Chem Chem Phys; 2014 Sep; 16(34):18163-9. PubMed ID: 25052367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the NMR chemical shifts for 6-halopurines: role of structure, solvent and relativistic effects.
    Standara S; Malináková K; Marek R; Marek J; Hocek M; Vaara J; Straka M
    Phys Chem Chem Phys; 2010 May; 12(19):5126-39. PubMed ID: 20445915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate and cost-effective NMR chemical shift predictions for proteins using a molecules-in-molecules fragmentation-based method.
    Chandy SK; Thapa B; Raghavachari K
    Phys Chem Chem Phys; 2020 Dec; 22(47):27781-27799. PubMed ID: 33244526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Fragmentation Polarizable Embedding Density Functional Theory (PE-DFT) Calculations of Nuclear Magnetic Resonance (NMR) Shielding Constants of Proteins with Application to Chemical Shift Predictions.
    Steinmann C; Bratholm LA; Olsen JM; Kongsted J
    J Chem Theory Comput; 2017 Feb; 13(2):525-536. PubMed ID: 27992211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Chemical Calculations of NMR Chemical Shifts in Phosphorylated Intrinsically Disordered Proteins.
    Pavlíková Přecechtělová J; Mládek A; Zapletal V; Hritz J
    J Chem Theory Comput; 2019 Oct; 15(10):5642-5658. PubMed ID: 31487161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AM1 parameters for the prediction of 1H and 13C NMR chemical shifts in proteins.
    Williams DE; Peters MB; Wang B; Roitberg AE; Merz KM
    J Phys Chem A; 2009 Oct; 113(43):11550-9. PubMed ID: 19799435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.