These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 25387970)

  • 1. Prediction of serine/threonine phosphorylation sites in bacteria proteins.
    Li Z; Wu P; Zhao Y; Liu Z; Zhao W
    Adv Exp Med Biol; 2015; 827():275-85. PubMed ID: 25387970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of prkC-mediated protein serine/threonine phosphorylation sites for bacteria.
    Zhang QB; Yu K; Liu Z; Wang D; Zhao Y; Yin S; Liu Z
    PLoS One; 2018; 13(10):e0203840. PubMed ID: 30278050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A newly discovered post-translational modification--the acetylation of serine and threonine residues.
    Mukherjee S; Hao YH; Orth K
    Trends Biochem Sci; 2007 May; 32(5):210-6. PubMed ID: 17412595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global phosphoproteomic analysis reveals diverse functions of serine/threonine/tyrosine phosphorylation in the model cyanobacterium Synechococcus sp. strain PCC 7002.
    Yang MK; Qiao ZX; Zhang WY; Xiong Q; Zhang J; Li T; Ge F; Zhao JD
    J Proteome Res; 2013 Apr; 12(4):1909-23. PubMed ID: 23461524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of protein phosphorylation sites by using the composition of k-spaced amino acid pairs.
    Zhao X; Zhang W; Xu X; Ma Z; Yin M
    PLoS One; 2012; 7(10):e46302. PubMed ID: 23110047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for predicting post-translational modifications on serine and threonine sites by using site-modification network profiles.
    Wang M; Jiang Y; Xu X
    Mol Biosyst; 2015 Nov; 11(11):3092-100. PubMed ID: 26344496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection.
    Xue Y; Liu Z; Cao J; Ma Q; Gao X; Wang Q; Jin C; Zhou Y; Wen L; Ren J
    Protein Eng Des Sel; 2011 Mar; 24(3):255-60. PubMed ID: 21062758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the serine/threonine/tyrosine phosphoproteome of the pathogenic bacterium Listeria monocytogenes reveals phosphorylated proteins related to virulence.
    Misra SK; Milohanic E; Aké F; Mijakovic I; Deutscher J; Monnet V; Henry C
    Proteomics; 2011 Nov; 11(21):4155-65. PubMed ID: 21956863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in bacterial signaling by serine/threonine protein kinases.
    Nagarajan SN; Lenoir C; Grangeasse C
    Trends Microbiol; 2022 Jun; 30(6):553-566. PubMed ID: 34836791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances, challenges and tools in characterizing bacterial serine, threonine and tyrosine kinases and phosphorylation target sites.
    Pagano GJ; Arsenault RJ
    Expert Rev Proteomics; 2019 May; 16(5):431-441. PubMed ID: 30920853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NetPhosBac - a predictor for Ser/Thr phosphorylation sites in bacterial proteins.
    Miller ML; Soufi B; Jers C; Blom N; Macek B; Mijakovic I
    Proteomics; 2009 Jan; 9(1):116-25. PubMed ID: 19053140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of serine phosphorylation sites mapping on Schizosaccharomyces Pombe by fusing three encoding schemes with the random forest classifier.
    Tasmia SA; Kibria MK; Tuly KF; Islam MA; Khatun MS; Hasan MM; Mollah MNH
    Sci Rep; 2022 Feb; 12(1):2632. PubMed ID: 35173235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CSS-Palm: palmitoylation site prediction with a clustering and scoring strategy (CSS).
    Zhou F; Xue Y; Yao X; Xu Y
    Bioinformatics; 2006 Apr; 22(7):894-6. PubMed ID: 16434441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ser/Thr/Tyr phosphoproteome analysis of pathogenic and non-pathogenic Pseudomonas species.
    Ravichandran A; Sugiyama N; Tomita M; Swarup S; Ishihama Y
    Proteomics; 2009 May; 9(10):2764-75. PubMed ID: 19405024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel sequence-based method for phosphorylation site prediction with feature selection and analysis.
    He ZS; Shi XH; Kong XY; Zhu YB; Chou KC
    Protein Pept Lett; 2012 Jan; 19(1):70-8. PubMed ID: 21919857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. dbPSP: a curated database for protein phosphorylation sites in prokaryotes.
    Pan Z; Wang B; Zhang Y; Wang Y; Ullah S; Jian R; Liu Z; Xue Y
    Database (Oxford); 2015; 2015():bav031. PubMed ID: 25841437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GPS-YNO2: computational prediction of tyrosine nitration sites in proteins.
    Liu Z; Cao J; Ma Q; Gao X; Ren J; Xue Y
    Mol Biosyst; 2011 Apr; 7(4):1197-204. PubMed ID: 21258675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global phosphoproteomic analysis of Daphnia pulex reveals evolutionary conservation of Ser/Thr/Tyr phosphorylation.
    Kwon OK; Sim J; Yun KN; Kim JY; Lee S
    J Proteome Res; 2014 Mar; 13(3):1327-35. PubMed ID: 24467309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that phosphorylation of threonine in the GT motif triggers activation of PknA, a eukaryotic-type serine/threonine kinase from Mycobacterium tuberculosis.
    Ravala SK; Singh S; Yadav GS; Kumar S; Karthikeyan S; Chakraborti PK
    FEBS J; 2015 Apr; 282(8):1419-31. PubMed ID: 25665034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of protein kinase-specific phosphorylation sites in hierarchical structure using functional information and random forest.
    Fan W; Xu X; Shen Y; Feng H; Li A; Wang M
    Amino Acids; 2014 Apr; 46(4):1069-78. PubMed ID: 24452754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.