These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 25387971)
1. Bioinformatics tools for discovery and functional analysis of single nucleotide polymorphisms. Li L; Wei D Adv Exp Med Biol; 2015; 827():287-310. PubMed ID: 25387971 [TBL] [Abstract][Full Text] [Related]
2. Prediction and functional analysis of single nucleotide polymorphisms. Li L; Chen Q; Wei DQ Curr Drug Metab; 2012 Sep; 13(7):1012-23. PubMed ID: 22591351 [TBL] [Abstract][Full Text] [Related]
3. Bioinformatic tools for identifying disease gene and SNP candidates. Mooney SD; Krishnan VG; Evani US Methods Mol Biol; 2010; 628():307-19. PubMed ID: 20238089 [TBL] [Abstract][Full Text] [Related]
4. Bioinformatics tools for single nucleotide polymorphism discovery and analysis. Clifford RJ; Edmonson MN; Nguyen C; Scherpbier T; Hu Y; Buetow KH Ann N Y Acad Sci; 2004 May; 1020():101-9. PubMed ID: 15208187 [TBL] [Abstract][Full Text] [Related]
5. Bioinformatics approaches and resources for single nucleotide polymorphism functional analysis. Mooney S Brief Bioinform; 2005 Mar; 6(1):44-56. PubMed ID: 15826356 [TBL] [Abstract][Full Text] [Related]
6. Mining SNPs from DNA sequence data; computational approaches to SNP discovery and analysis. van Oeveren J; Janssen A Methods Mol Biol; 2009; 578():73-91. PubMed ID: 19768587 [TBL] [Abstract][Full Text] [Related]
7. Candidate single nucleotide polymorphism selection using publicly available tools: a guide for epidemiologists. Bhatti P; Church DM; Rutter JL; Struewing JP; Sigurdson AJ Am J Epidemiol; 2006 Oct; 164(8):794-804. PubMed ID: 16923772 [TBL] [Abstract][Full Text] [Related]
8. Prioritization of candidate SNPs in colon cancer using bioinformatics tools: an alternative approach for a cancer biologist. George Priya Doss C; Rajasekaran R; Arjun P; Sethumadhavan R Interdiscip Sci; 2010 Dec; 2(4):320-46. PubMed ID: 21153778 [TBL] [Abstract][Full Text] [Related]
9. In silico whole-genome screening for cancer-related single-nucleotide polymorphisms located in human mRNA untranslated regions. Aouacheria A; Navratil V; López-Pérez R; Gutiérrez NC; Churkin A; Barash D; Mouchiroud D; Gautier C BMC Genomics; 2007 Jan; 8():2. PubMed ID: 17201911 [TBL] [Abstract][Full Text] [Related]
10. A bioinformatics approach for the phenotype prediction of nonsynonymous single nucleotide polymorphisms in human cytochromes P450. Wang LL; Li Y; Zhou SF Drug Metab Dispos; 2009 May; 37(5):977-91. PubMed ID: 19204079 [TBL] [Abstract][Full Text] [Related]
11. Applications of computational tools to predict functional SNPs effects in human ErbB genes. Choura M; Rebaï A J Recept Signal Transduct Res; 2009; 29(5):286-91. PubMed ID: 19728770 [TBL] [Abstract][Full Text] [Related]
12. Functional evaluation of genetic variants associated with endometriosis near GREB1. Fung JN; Holdsworth-Carson SJ; Sapkota Y; Zhao ZZ; Jones L; Girling JE; Paiva P; Healey M; Nyholt DR; Rogers PA; Montgomery GW Hum Reprod; 2015 May; 30(5):1263-75. PubMed ID: 25788566 [TBL] [Abstract][Full Text] [Related]
13. A method for discovery of genome-wide SNP between any two genotypes from whole-genome re-sequencing data. Krishnan SG; Waters DL; Henry RJ Methods Mol Biol; 2014; 1099():287-94. PubMed ID: 24243213 [TBL] [Abstract][Full Text] [Related]
14. Improved feature-based prediction of SNPs in human cytochrome P450 enzymes. Li L; Xiong Y; Zhang ZY; Guo Q; Xu Q; Liow HH; Zhang YH; Wei DQ Interdiscip Sci; 2015 Mar; 7(1):65-77. PubMed ID: 25792441 [TBL] [Abstract][Full Text] [Related]
15. Computational prediction of the effects of non-synonymous single nucleotide polymorphisms in human DNA repair genes. Nakken S; Alseth I; Rognes T Neuroscience; 2007 Apr; 145(4):1273-9. PubMed ID: 17055652 [TBL] [Abstract][Full Text] [Related]
16. Coverage-based consensus calling (CbCC) of short sequence reads and comparison of CbCC results to identify SNPs in chickpea (Cicer arietinum; Fabaceae), a crop species without a reference genome. Azam S; Thakur V; Ruperao P; Shah T; Balaji J; Amindala B; Farmer AD; Studholme DJ; May GD; Edwards D; Jones JD; Varshney RK Am J Bot; 2012 Feb; 99(2):186-92. PubMed ID: 22301893 [TBL] [Abstract][Full Text] [Related]
17. A resource of genome-wide single-nucleotide polymorphisms generated by RAD tag sequencing in the critically endangered European eel. Pujolar JM; Jacobsen MW; Frydenberg J; Als TD; Larsen PF; Maes GE; Zane L; Jian JB; Cheng L; Hansen MM Mol Ecol Resour; 2013 Jul; 13(4):706-14. PubMed ID: 23656721 [TBL] [Abstract][Full Text] [Related]
18. SNP mining porcine ESTs with MAVIANT, a novel tool for SNP evaluation and annotation. Panitz F; Stengaard H; Hornshøj H; Gorodkin J; Hedegaard J; Cirera S; Thomsen B; Madsen LB; Høj A; Vingborg RK; Zahn B; Wang X; Wang X; Wernersson R; Jørgensen CB; Scheibye-Knudsen K; Arvin T; Lumholdt S; Sawera M; Green T; Nielsen BJ; Havgaard JH; Brunak S; Fredholm M; Bendixen C Bioinformatics; 2007 Jul; 23(13):i387-91. PubMed ID: 17646321 [TBL] [Abstract][Full Text] [Related]
19. Mining the Unknown: Assigning Function to Noncoding Single Nucleotide Polymorphisms. Nishizaki SS; Boyle AP Trends Genet; 2017 Jan; 33(1):34-45. PubMed ID: 27939749 [TBL] [Abstract][Full Text] [Related]
20. Discovery of single-nucleotide polymorphisms (SNPs) in the uncharacterized genome of the ascomycete Ophiognomonia clavigignenti-juglandacearum from 454 sequence data. Broders KD; Woeste KE; San Miguel PJ; Westerman RP; Boland GJ Mol Ecol Resour; 2011 Jul; 11(4):693-702. PubMed ID: 21676199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]