These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25388107)

  • 1. Sequencing and annotation of mitochondrial genomes from individual parasitic helminths.
    Jex AR; Littlewood DT; Gasser RB
    Methods Mol Biol; 2015; 1201():51-63. PubMed ID: 25388107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long PCR amplification of the entire mitochondrial genome from individual helminths for direct sequencing.
    Hu M; Jex AR; Campbell BE; Gasser RB
    Nat Protoc; 2007; 2(10):2339-44. PubMed ID: 17947975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward next-generation sequencing of mitochondrial genomes--focus on parasitic worms of animals and biotechnological implications.
    Jex AR; Littlewood DT; Gasser RB
    Biotechnol Adv; 2010; 28(1):151-9. PubMed ID: 19913084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated pipeline for next-generation sequencing and annotation of mitochondrial genomes.
    Jex AR; Hall RS; Littlewood DT; Gasser RB
    Nucleic Acids Res; 2010 Jan; 38(2):522-33. PubMed ID: 19892826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using 454 technology for long-PCR based sequencing of the complete mitochondrial genome from single Haemonchus contortus (Nematoda).
    Jex AR; Hu M; Littlewood DT; Waeschenbach A; Gasser RB
    BMC Genomics; 2008 Jan; 9():11. PubMed ID: 18190685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mitochondrial genomics of parasitic nematodes of socio-economic importance: recent progress, and implications for population genetics and systematics.
    Hu M; Chilton NB; Gasser RB
    Adv Parasitol; 2004; 56():133-212. PubMed ID: 14710997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated pipeline for next generation sequencing and annotation of the complete mitochondrial genome of the giant intestinal fluke, Fasciolopsis buski (Lankester, 1857) Looss, 1899.
    Biswal DK; Ghatani S; Shylla JA; Sahu R; Mullapudi N; Bhattacharya A; Tandon V
    PeerJ; 2013; 1():e207. PubMed ID: 24255820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Making sense of genomes of parasitic worms: Tackling bioinformatic challenges.
    Korhonen PK; Young ND; Gasser RB
    Biotechnol Adv; 2016; 34(5):663-686. PubMed ID: 26956711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequencing and Reconstructing Helminth Mitochondrial Genomes Directly from Genomic Next-Generation Sequencing Data.
    Palevich N; Maclean PH
    Methods Mol Biol; 2021; 2369():27-40. PubMed ID: 34313982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial genomes of parasitic nematodes--progress and perspectives.
    Hu M; Gasser RB
    Trends Parasitol; 2006 Feb; 22(2):78-84. PubMed ID: 16377245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional genomics approaches in parasitic helminths.
    Hagen J; Lee EF; Fairlie WD; Kalinna BH
    Parasite Immunol; 2012; 34(2-3):163-82. PubMed ID: 21711361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the complete mitochondrial genomes from Polycladida (Platyhelminthes) using next-generation sequencing.
    Aguado MT; Grande C; Gerth M; Bleidorn C; NoreƱa C
    Gene; 2016 Jan; 575(2 Pt 1):199-205. PubMed ID: 26325071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise annotation of tick mitochondrial genomes reveals multiple copy number variation of short tandem repeats and one transposon-like element.
    Chen Z; Xuan Y; Liang G; Yang X; Yu Z; Barker SC; Kelava S; Bu W; Liu J; Gao S
    BMC Genomics; 2020 Jul; 21(1):488. PubMed ID: 32680454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving helminth genome resources in the post-genomic era.
    Doyle SR
    Trends Parasitol; 2022 Oct; 38(10):831-840. PubMed ID: 35810065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of next-generation technologies on exploring socioeconomically important parasites and developing new interventions.
    Cantacessi C; Hofmann A; Campbell BE; Gasser RB
    Methods Mol Biol; 2015; 1247():437-74. PubMed ID: 25399114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Producing parasitic helminth reference and draft genomes at the Wellcome Trust Sanger Institute.
    Holroyd N; Sanchez-Flores A
    Parasite Immunol; 2012; 34(2-3):100-7. PubMed ID: 21707658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Next Generation Sequencing (NGS) technologies for the genome-wide detection of transposition.
    Elbaidouri M; Chaparro C; Panaud O
    Methods Mol Biol; 2013; 1057():265-74. PubMed ID: 23918435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial genomes of Anisakis simplex and Contracaecum osculatum (sensu stricto)--comparisons with selected nematodes.
    Mohandas N; Jabbar A; Podolska M; Zhu XQ; Littlewood DT; Jex AR; Gasser RB
    Infect Genet Evol; 2014 Jan; 21():452-62. PubMed ID: 24211683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatics meets parasitology.
    Cantacessi C; Campbell BE; Jex AR; Young ND; Hall RS; Ranganathan S; Gasser RB
    Parasite Immunol; 2012 May; 34(5):265-75. PubMed ID: 21615422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 454 sequencing approach to dipteran mitochondrial genome research.
    Ramakodi MP; Singh B; Wells JD; Guerrero F; Ray DA
    Genomics; 2015 Jan; 105(1):53-60. PubMed ID: 25451744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.