These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 25388148)

  • 1. Distinct profiling of antimicrobial peptide families.
    Khamis AM; Essack M; Gao X; Bajic VB
    Bioinformatics; 2015 Mar; 31(6):849-56. PubMed ID: 25388148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Overview of Databases and Bioinformatics Tools for Plant Antimicrobial Peptides.
    Quintans ILADCR; de Araújo JVA; Rocha LNM; de Andrade AEB; do Rêgo TG; Deyholos MK
    Curr Protein Pept Sci; 2022; 23(1):6-19. PubMed ID: 34951361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. dbAMP: an integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data.
    Jhong JH; Chi YH; Li WC; Lin TH; Huang KY; Lee TY
    Nucleic Acids Res; 2019 Jan; 47(D1):D285-D297. PubMed ID: 30380085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide Design Principles for Antimicrobial Applications.
    Torres MDT; Sothiselvam S; Lu TK; de la Fuente-Nunez C
    J Mol Biol; 2019 Aug; 431(18):3547-3567. PubMed ID: 30611750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leveraging family-specific signatures for AMP discovery and high-throughput annotation.
    Waghu FH; Barai RS; Idicula-Thomas S
    Sci Rep; 2016 Apr; 6():24684. PubMed ID: 27089856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides.
    Juretić D; Vukičević D; Petrov D; Novković M; Bojović V; Lučić B; Ilić N; Tossi A
    Eur Biophys J; 2011 Apr; 40(4):371-85. PubMed ID: 21274708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial peptides: therapeutic potentials.
    Kang SJ; Park SJ; Mishig-Ochir T; Lee BJ
    Expert Rev Anti Infect Ther; 2014 Dec; 12(12):1477-86. PubMed ID: 25371141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico design of antimicrobial peptides.
    Maccari G; Di Luca M; Nifosì R
    Methods Mol Biol; 2015; 1268():195-219. PubMed ID: 25555726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tools for Designing Amphipathic Helical Antimicrobial Peptides.
    Juretić D; Vukičević D; Tossi A
    Methods Mol Biol; 2017; 1548():23-34. PubMed ID: 28013494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DAMPD: a manually curated antimicrobial peptide database.
    Seshadri Sundararajan V; Gabere MN; Pretorius A; Adam S; Christoffels A; Lehväslaiho M; Archer JA; Bajic VB
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D1108-12. PubMed ID: 22110032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of stereochemistry, chain length and sequence pattern on antimicrobial properties of short synthetic β-sheet forming peptide amphiphiles.
    Ong ZY; Cheng J; Huang Y; Xu K; Ji Z; Fan W; Yang YY
    Biomaterials; 2014 Jan; 35(4):1315-25. PubMed ID: 24211081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a novel antimicrobial peptide from amphioxus Branchiostoma japonicum by in silico and functional analyses.
    Liu H; Lei M; Du X; Cui P; Zhang S
    Sci Rep; 2015 Dec; 5():18355. PubMed ID: 26680226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Archetypal tryptophan-rich antimicrobial peptides: properties and applications.
    Shagaghi N; Palombo EA; Clayton AH; Bhave M
    World J Microbiol Biotechnol; 2016 Feb; 32(2):31. PubMed ID: 26748808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EST-based in silico identification and in vitro test of antimicrobial peptides in Brassica napus.
    Ke T; Cao H; Huang J; Hu F; Huang J; Dong C; Ma X; Yu J; Mao H; Wang X; Niu Q; Hui F; Liu S
    BMC Genomics; 2015 Sep; 16(1):653. PubMed ID: 26330304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial peptides from Rana [Lithobates] catesbeiana: Gene structure and bioinformatic identification of novel forms from tadpoles.
    Helbing CC; Hammond SA; Jackman SH; Houston S; Warren RL; Cameron CE; Birol I
    Sci Rep; 2019 Feb; 9(1):1529. PubMed ID: 30728430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides.
    Waghu FH; Barai RS; Gurung P; Idicula-Thomas S
    Nucleic Acids Res; 2016 Jan; 44(D1):D1094-7. PubMed ID: 26467475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fish antimicrobial peptides (AMP's) as essential and promising molecular therapeutic agents: A review.
    Shabir U; Ali S; Magray AR; Ganai BA; Firdous P; Hassan T; Nazir R
    Microb Pathog; 2018 Jan; 114():50-56. PubMed ID: 29180291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DRAMP: a comprehensive data repository of antimicrobial peptides.
    Fan L; Sun J; Zhou M; Zhou J; Lao X; Zheng H; Xu H
    Sci Rep; 2016 Apr; 6():24482. PubMed ID: 27075512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BaAMPs: the database of biofilm-active antimicrobial peptides.
    Di Luca M; Maccari G; Maisetta G; Batoni G
    Biofouling; 2015; 31(2):193-9. PubMed ID: 25760404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The expanding scope of antimicrobial peptide structures and their modes of action.
    Nguyen LT; Haney EF; Vogel HJ
    Trends Biotechnol; 2011 Sep; 29(9):464-72. PubMed ID: 21680034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.