These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 25388279)

  • 21. Scavenging of hydroxyl, methoxy, and nitrogen dioxide free radicals by some methylated isoflavones.
    Tiwari MK; Mishra PC
    J Mol Model; 2018 Sep; 24(10):287. PubMed ID: 30242489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radical scavenging ability of gallic acid toward OH and OOH radicals. Reaction mechanism and rate constants from the density functional theory.
    Marino T; Galano A; Russo N
    J Phys Chem B; 2014 Sep; 118(35):10380-9. PubMed ID: 25119432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure-activity relationship of caffeic acid phenethyl ester analogs as new 5-lipoxygenase inhibitors.
    Doiron JA; Leblanc LM; Hébert MJ; Levesque NA; Paré AF; Jean-François J; Cormier M; Surette ME; Touaibia M
    Chem Biol Drug Des; 2017 Apr; 89(4):514-528. PubMed ID: 27717142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Caffeic acid phenethyl ester exhibiting distinctive binding interaction with human serum albumin implies the pharmacokinetic basis of propolis bioactive components.
    Li H; Wu F; Tan J; Wang K; Zhang C; Zheng H; Hu F
    J Pharm Biomed Anal; 2016 Apr; 122():21-8. PubMed ID: 26829518
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Caffeic acid phenethyl ester and its related compounds limit the functional alterations of the isolated mouse brain and liver mitochondria submitted to in vitro anoxia-reoxygenation: relationship to their antioxidant activities.
    Feng Y; Lu YW; Xu PH; Long Y; Wu WM; Li W; Wang R
    Biochim Biophys Acta; 2008 Apr; 1780(4):659-72. PubMed ID: 18230365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stability of caffeic acid phenethyl amide (CAPA) in rat plasma.
    Yang J; Kerwin SM; Bowman PD; Stavchansky S
    Biomed Chromatogr; 2012 May; 26(5):594-8. PubMed ID: 21915890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of Novel Bioactive Cellulose-Based Films Derived from Caffeic Acid Phenethyl Ester-Loaded Nanoparticles via a Rapid Expansion Process: RESOLV.
    Saelo S; Assatarakul K; Sane A; Suppakul P
    J Agric Food Chem; 2016 Sep; 64(35):6694-707. PubMed ID: 27548627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical and kinetic study of the hydrogen atom abstraction reactions of esters with H(O.)2 radicals.
    Mendes J; Zhou CW; Curran HJ
    J Phys Chem A; 2013 Dec; 117(51):14006-18. PubMed ID: 24175616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of olefin group and its position on the kinetics for intramolecular H-shift and HO2 elimination of alkenyl peroxy radicals.
    Zhang F; Dibble TS
    J Phys Chem A; 2011 Feb; 115(5):655-63. PubMed ID: 21235235
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of solvent polarity on the antioxidant potential of echinatin, a retrochalcone, towards various ROS: a DFT thermodynamic study.
    Mittal A; Kakkar R
    Free Radic Res; 2020 Oct; 54(10):777-786. PubMed ID: 33183109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Importance of Proton-Coupled Electron Transfer from Natural Phenolic Compounds in Superoxide Scavenging.
    Nakayama T; Uno B
    Chem Pharm Bull (Tokyo); 2015; 63(12):967-73. PubMed ID: 26633020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synergic antioxidant activity of γ-terpinene with phenols and polyphenols enabled by hydroperoxyl radicals.
    Guo Y; Baschieri A; Amorati R; Valgimigli L
    Food Chem; 2021 May; 345():128468. PubMed ID: 33341300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural basis for the inhibition of AKR1B10 by caffeic acid phenethyl ester (CAPE).
    Zhang L; Zhang H; Zheng X; Zhao Y; Chen S; Chen Y; Zhang R; Li Q; Hu X
    ChemMedChem; 2014 Apr; 9(4):706-9. PubMed ID: 24436249
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical study on the antioxidant properties of 2'-hydroxychalcones: H-atom vs. electron transfer mechanism.
    Xue Y; Zheng Y; Zhang L; Wu W; Yu D; Liu Y
    J Mol Model; 2013 Sep; 19(9):3851-62. PubMed ID: 23801254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stability of caffeic acid phenethyl ester and its fluorinated derivative in rat plasma.
    Wang X; Bowman PD; Kerwin SM; Stavchansky S
    Biomed Chromatogr; 2007 Apr; 21(4):343-50. PubMed ID: 17340562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cooperative Reinforcement of Ionic Liquid and Reactive Solvent on Enzymatic Synthesis of Caffeic Acid Phenethyl Ester as an In Vitro Inhibitor of Plant Pathogenic Bacteria.
    Xu Y; Sheng S; Liu X; Wang C; Xiao W; Wang J; Wu FA
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28045451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced antioxidant effect of caffeic acid phenethyl ester and Trolox in combination against radiation induced-oxidative stress.
    Bai H; Liu R; Chen HL; Zhang W; Wang X; Zhang XD; Li WL; Hai CX
    Chem Biol Interact; 2014 Jan; 207():7-15. PubMed ID: 24211618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical study of the thermodynamics of the mechanisms underlying antiradical activity of cinnamic acid derivatives.
    Amić A; Marković Z; Klein E; Dimitrić Marković JM; Milenković D
    Food Chem; 2018 Apr; 246():481-489. PubMed ID: 29291877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and characterization of MnO
    Gupta VK; Fakhri A; Agarwal S; Ahmadi E; Nejad PA
    J Photochem Photobiol B; 2017 Sep; 174():235-242. PubMed ID: 28802174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of caffeic acid phenethyl ester derivatives, and their cytoprotective and neuritogenic activities in PC12 cells.
    Shi H; Xie D; Yang R; Cheng Y
    J Agric Food Chem; 2014 Jun; 62(22):5046-53. PubMed ID: 24840770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.