These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 25388296)
1. Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait. Trojaniello D; Cereatti A; Pelosin E; Avanzino L; Mirelman A; Hausdorff JM; Della Croce U J Neuroeng Rehabil; 2014 Nov; 11():152. PubMed ID: 25388296 [TBL] [Abstract][Full Text] [Related]
2. Estimation of spatio-temporal parameters of gait from magneto-inertial measurement units: multicenter validation among Parkinson, mildly cognitively impaired and healthy older adults. Bertoli M; Cereatti A; Trojaniello D; Avanzino L; Pelosin E; Del Din S; Rochester L; Ginis P; Bekkers EMJ; Mirelman A; Hausdorff JM; Della Croce U Biomed Eng Online; 2018 May; 17(1):58. PubMed ID: 29739456 [TBL] [Abstract][Full Text] [Related]
3. Comparative assessment of different methods for the estimation of gait temporal parameters using a single inertial sensor: application to elderly, post-stroke, Parkinson's disease and Huntington's disease subjects. Trojaniello D; Ravaschio A; Hausdorff JM; Cereatti A Gait Posture; 2015 Sep; 42(3):310-6. PubMed ID: 26163348 [TBL] [Abstract][Full Text] [Related]
4. Estimation of spatio-temporal parameters for post-stroke hemiparetic gait using inertial sensors. Yang S; Zhang JT; Novak AC; Brouwer B; Li Q Gait Posture; 2013 Mar; 37(3):354-8. PubMed ID: 23000235 [TBL] [Abstract][Full Text] [Related]
5. Bilateral step length estimation using a single inertial measurement unit attached to the pelvis. Köse A; Cereatti A; Della Croce U J Neuroeng Rehabil; 2012 Feb; 9():9. PubMed ID: 22316235 [TBL] [Abstract][Full Text] [Related]
6. Automatic gait events detection with inertial measurement units: healthy subjects and moderate to severe impaired patients. Voisard C; de l'Escalopier N; Ricard D; Oudre L J Neuroeng Rehabil; 2024 Jun; 21(1):104. PubMed ID: 38890696 [TBL] [Abstract][Full Text] [Related]
7. Assessment of gait direction changes during straight-ahead walking in healthy elderly and Huntington disease patients using a shank worn MIMU. Trojaniello D; Cereatti A; Ravaschio A; Bandettini M; Della Croce U Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2508-11. PubMed ID: 25570500 [TBL] [Abstract][Full Text] [Related]
8. Gait initiation is impaired in subjects with Parkinson's disease in the OFF state: Evidence from the analysis of the anticipatory postural adjustments through wearable inertial sensors. Bonora G; Mancini M; Carpinella I; Chiari L; Horak FB; Ferrarin M Gait Posture; 2017 Jan; 51():218-221. PubMed ID: 27816900 [TBL] [Abstract][Full Text] [Related]
9. A Novel Approach for Improving Gait Speed Estimation Using a Single Inertial Measurement Unit Embedded in a Smartphone: Validity and Reliability Study. Lee PA; Yu W; Zhou J; Tsai T; Manor B; Lo OY JMIR Mhealth Uhealth; 2024 Aug; 12():e52166. PubMed ID: 39140268 [TBL] [Abstract][Full Text] [Related]
10. Accuracy, sensitivity and robustness of five different methods for the estimation of gait temporal parameters using a single inertial sensor mounted on the lower trunk. Trojaniello D; Cereatti A; Della Croce U Gait Posture; 2014 Sep; 40(4):487-92. PubMed ID: 25085660 [TBL] [Abstract][Full Text] [Related]
11. Spatio-temporal gait analysis in children with cerebral palsy using, foot-worn inertial sensors. Brégou Bourgeois A; Mariani B; Aminian K; Zambelli PY; Newman CJ Gait Posture; 2014; 39(1):436-42. PubMed ID: 24044970 [TBL] [Abstract][Full Text] [Related]
12. Foot clearance estimation during overground walking and vertical obstacle passing using shank-mounted MIMUs in healthy and pathological subjects. Trojaniello D; Cereatti A; Della Croce U Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5505-8. PubMed ID: 26737538 [TBL] [Abstract][Full Text] [Related]
13. A new instrumented method for the evaluation of gait initiation and step climbing based on inertial sensors: a pilot application in Parkinson's disease. Bonora G; Carpinella I; Cattaneo D; Chiari L; Ferrarin M J Neuroeng Rehabil; 2015 May; 12():45. PubMed ID: 25940457 [TBL] [Abstract][Full Text] [Related]
14. Estimation of Gait Parameters in Huntington's Disease Using Wearable Sensors in the Clinic and Free-living Conditions. Lozano-Garcia M; Doheny EP; Mann E; Morgan-Jones P; Drew C; Busse-Morris M; Lowery MM IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2239-2249. PubMed ID: 38819972 [TBL] [Abstract][Full Text] [Related]
16. Assessment of spatio-temporal gait parameters using inertial measurement units in neurological populations. Esser P; Dawes H; Collett J; Feltham MG; Howells K Gait Posture; 2011 Oct; 34(4):558-60. PubMed ID: 21764583 [TBL] [Abstract][Full Text] [Related]
17. Relationships between walking velocity and distance and the symmetry of temporospatial parameters in chronic post-stroke subjects. Guzik A; Drużbicki M; Przysada G; Kwolek A; Brzozowska-Magoń A; Sobolewski M Acta Bioeng Biomech; 2017; 19(3):147-154. PubMed ID: 29205208 [TBL] [Abstract][Full Text] [Related]
18. Gait event detection in laboratory and real life settings: Accuracy of ankle and waist sensor based methods. Storm FA; Buckley CJ; Mazzà C Gait Posture; 2016 Oct; 50():42-46. PubMed ID: 27567451 [TBL] [Abstract][Full Text] [Related]