These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25388881)

  • 1. A 10.5 cm ultrasound link for deep implanted medical devices.
    Mazzilli F; Lafon C; Dehollain C
    IEEE Trans Biomed Circuits Syst; 2014 Oct; 8(5):738-50. PubMed ID: 25388881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Omnidirectional Ultrasonic Powering for Millimeter-Scale Implantable Devices.
    Song SH; Kim A; Ziaie B
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2717-23. PubMed ID: 26080376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive control of the power transferred to an implanted device by an ultrasonic transcutaneous energy transfer link.
    Shmilovitz D; Ozeri S; Wang CC; Spivak B
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):995-1004. PubMed ID: 24013825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A MedRadio-band low-energy-per-bit 4-Mbps CMOS OOK receiver for implantable medical devices.
    Chou CW; Liu LC; Wu CY
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5171-4. PubMed ID: 24110900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensating for Tissue Changes in an Ultrasonic Power Link for Implanted Medical Devices.
    Vihvelin H; Leadbetter J; Bance M; Brown JA; Adamson RB
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):404-11. PubMed ID: 26054073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic frequency controller for power amplifiers used in bio-implanted applications: issues and challenges.
    Hannan MA; Hussein HA; Mutashar S; Samad SA; Hussain A
    Sensors (Basel); 2014 Dec; 14(12):23843-70. PubMed ID: 25615728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies.
    Radziemski L; Makin IR
    Ultrasonics; 2016 Jan; 64():1-9. PubMed ID: 26243566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Closed-loop class E transcutaneous power and data link for microimplants.
    Troyk PR; Schwan MA
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):589-99. PubMed ID: 1601440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study for safe and efficient energy transfer to deeply implanted devices using ultrasound.
    Cotté B; Lafon C; Dehollain C; Chapelon JY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1674-85. PubMed ID: 22899115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic transcutaneous energy transfer for powering implanted devices.
    Ozeri S; Shmilovitz D
    Ultrasonics; 2010 May; 50(6):556-66. PubMed ID: 20031183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation.
    Ozeri S; Shmilovitz D
    Ultrasonics; 2014 Sep; 54(7):1929-37. PubMed ID: 24861424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A closed loop wireless power transmission system using a commercial RFID transceiver for biomedical applications.
    Kiani M; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3841-4. PubMed ID: 19963595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of dual band power and data telemetry for biomedical implants.
    Guoxing Wang ; Peijun Wang ; Yina Tang ; Wentai Liu
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):208-15. PubMed ID: 23853143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropower circuits for bidirectional wireless telemetry in neural recording applications.
    Neihart NM; Harrison RR
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1950-9. PubMed ID: 16285399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A wireless magnetic resonance energy transfer system for micro implantable medical sensors.
    Li X; Zhang H; Peng F; Li Y; Yang T; Wang B; Fang D
    Sensors (Basel); 2012; 12(8):10292-308. PubMed ID: 23112600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fully integrated 200 µW, 40 pJ/b wireless transmitter for implanted medical devices and neural prostheses.
    Goodarzy F; Skafidas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3246-9. PubMed ID: 24110420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wireless energy transfer platform for medical sensors and implantable devices.
    Zhang F; Hackworth SA; Liu X; Chen H; Sclabassi RJ; Sun M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1045-8. PubMed ID: 19964948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wireless technologies for closed-loop retinal prostheses.
    Ng DC; Bai S; Yang J; Tran N; Skafidas E
    J Neural Eng; 2009 Dec; 6(6):065004. PubMed ID: 19850974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wireless Ultrasonic Communication for Biomedical Injectable Implantable Device.
    Jaafar B; Soltan A; Neasham J; Degenaar P
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4024-4027. PubMed ID: 31946754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Optimization of Ultrasonic Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants.
    Meng M; Kiani M
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):98-107. PubMed ID: 27662684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.