BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 25388888)

  • 1. Gold nanoaggregates for probing single-living cell based on surface-enhanced Raman spectroscopy.
    Lu P; Wang J; Lin J; Lin J; Liu N; Huang Z; Li B; Zeng H; Chen R
    J Biomed Opt; 2015 May; 20(5):051005. PubMed ID: 25388888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells.
    Kneipp K; Kneipp H; Kneipp J
    Acc Chem Res; 2006 Jul; 39(7):443-50. PubMed ID: 16846208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanosponges (AuNS): a versatile nanostructure for surface-enhanced Raman spectroscopic detection of small molecules and biomolecules.
    Wallace GQ; Zuin MS; Tabatabaei M; Gobbo P; Lagugné-Labarthet F; Workentin MS
    Analyst; 2015 Nov; 140(21):7278-82. PubMed ID: 26347904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, properties, and surface enhanced Raman scattering of gold and silver nanoparticles in chitosan matrix.
    Wei D; Qian W; Wu D; Xia Y; Liu X
    J Nanosci Nanotechnol; 2009 Apr; 9(4):2566-73. PubMed ID: 19438003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of intracellular state based on controlled 3D nanostructures mediated surface enhanced Raman scattering.
    El-Said WA; Kim TH; Kim H; Choi JW
    PLoS One; 2011 Feb; 6(2):e15836. PubMed ID: 21390213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes.
    Vitol EA; Orynbayeva Z; Bouchard MJ; Azizkhan-Clifford J; Friedman G; Gogotsi Y
    ACS Nano; 2009 Nov; 3(11):3529-36. PubMed ID: 19891490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of intracellular gold nanoparticles using surface-enhanced Raman scattering.
    Xie HN; Lin Y; Mazo M; Chiappini C; Sánchez-Iglesias A; Liz-Marzán LM; Stevens MM
    Nanoscale; 2014 Nov; 6(21):12403-7. PubMed ID: 25231338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-enhanced Raman scattering imaging using noble metal nanoparticles.
    Wilson AJ; Willets KA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):180-9. PubMed ID: 23335562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection.
    Ma X; Xia Y; Ni L; Song L; Wang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():657-61. PubMed ID: 24368285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-metal, Multi-wavelength Surface-Enhanced Raman Spectroscopy Detection of Neurotransmitters.
    Moody AS; Sharma B
    ACS Chem Neurosci; 2018 Jun; 9(6):1380-1387. PubMed ID: 29601719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets.
    Liu Y; Wu P
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear targeted nanoprobe for single living cell detection by surface-enhanced Raman scattering.
    Xie W; Wang L; Zhang Y; Su L; Shen A; Tan J; Hu J
    Bioconjug Chem; 2009 Apr; 20(4):768-73. PubMed ID: 19267459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement.
    Guo P; Sikdar D; Huang X; Si KJ; Xiong W; Gong S; Yap LW; Premaratne M; Cheng W
    Nanoscale; 2015 Feb; 7(7):2862-8. PubMed ID: 25599516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy.
    Lin J; Chen R; Feng S; Li Y; Huang Z; Xie S; Yu Y; Cheng M; Zeng H
    Biosens Bioelectron; 2009 Oct; 25(2):388-94. PubMed ID: 19699079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general route to construct diverse multifunctional Fe3O4/metal hybrid nanostructures.
    Guo S; Dong S; Wang E
    Chemistry; 2009; 15(10):2416-24. PubMed ID: 19142931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance.
    Huang H; Wang JH; Jin W; Li P; Chen M; Xie HH; Yu XF; Wang H; Dai Z; Xiao X; Chu PK
    Small; 2014 Oct; 10(19):4012-9. PubMed ID: 24947686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the photothermal effect of gold-based nanocages with surface-enhanced Raman scattering (SERS).
    Rycenga M; Wang Z; Gordon E; Cobley CM; Schwartz AG; Lo CS; Xia Y
    Angew Chem Int Ed Engl; 2009; 48(52):9924-7. PubMed ID: 20014343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantitative study of the intracellular concentration of graphene/noble metal nanoparticle composites and their cytotoxicity.
    Zhou X; Dorn M; Vogt J; Spemann D; Yu W; Mao Z; Estrela-Lopis I; Donath E; Gao C
    Nanoscale; 2014 Aug; 6(15):8535-42. PubMed ID: 24962780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.