These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 2538921)
1. Direct Brønsted analysis of the restoration of activity to a mutant enzyme by exogenous amines. Toney MD; Kirsch JF Science; 1989 Mar; 243(4897):1485-8. PubMed ID: 2538921 [TBL] [Abstract][Full Text] [Related]
2. Brønsted analysis of aspartate aminotransferase via exogenous catalysis of reactions of an inactive mutant. Toney MD; Kirsch JF Protein Sci; 1992 Jan; 1(1):107-19. PubMed ID: 1339023 [TBL] [Abstract][Full Text] [Related]
3. Substitution of an arginyl residue for the active site lysyl residue (Lys258) of aspartate aminotransferase. Kuramitsu S; Inoue Y; Tanase S; Morino Y; Kagamiyama H Biochem Biophys Res Commun; 1987 Jul; 146(2):416-21. PubMed ID: 3113421 [TBL] [Abstract][Full Text] [Related]
4. Brønsted analysis of enzymatic proton transfer reactions through site-directed mutagenesis. Kirsch JF; Toney MD Ann N Y Acad Sci; 1990; 585():48-57. PubMed ID: 2162646 [No Abstract] [Full Text] [Related]
5. Role of Asp222 in the catalytic mechanism of Escherichia coli aspartate aminotransferase: the amino acid residue which enhances the function of the enzyme-bound coenzyme pyridoxal 5'-phosphate. Yano T; Kuramitsu S; Tanase S; Morino Y; Kagamiyama H Biochemistry; 1992 Jun; 31(25):5878-87. PubMed ID: 1610831 [TBL] [Abstract][Full Text] [Related]
6. The imine-pyridine torsion of the pyridoxal 5'-phosphate Schiff base of aspartate aminotransferase lowers its pKa in the unliganded enzyme and is crucial for the successive increase in the pKa during catalysis. Hayashi H; Mizuguchi H; Kagamiyama H Biochemistry; 1998 Oct; 37(43):15076-85. PubMed ID: 9790670 [TBL] [Abstract][Full Text] [Related]
7. Reengineering the catalytic lysine of aspartate aminotransferase by chemical elaboration of a genetically introduced cysteine. Planas A; Kirsch JF Biochemistry; 1991 Aug; 30(33):8268-76. PubMed ID: 1907854 [TBL] [Abstract][Full Text] [Related]
8. The stereospecific labilization of the C-4' pro-S hydrogen of pyridoxamine 5'-phosphate is abolished in (Lys258----Ala) aspartate aminotransferase. Kochhar S; Finlayson WL; Kirsch JF; Christen P J Biol Chem; 1987 Aug; 262(24):11446-8. PubMed ID: 3114245 [TBL] [Abstract][Full Text] [Related]
9. Extent of proton transfer in the transition states of the reaction catalyzed by the delta 5-3-ketosteroid isomerase of Comamonas (Pseudomonas) testosteroni: site-specific replacement of the active site base, aspartate 38, by the weaker base alanine-3-sulfinate. Holman CM; Benisek WF Biochemistry; 1994 Mar; 33(9):2672-81. PubMed ID: 8117731 [TBL] [Abstract][Full Text] [Related]
10. Replacement of active-site lysine-239 of thermostable aspartate aminotransferase by S-(2-aminoethyl)cysteine: properties of the mutant enzyme. Matsushima Y; Kim DW; Yoshimura T; Kuramitsu S; Kagamiyama H; Esaki N; Soda K J Biochem; 1994 Jan; 115(1):108-12. PubMed ID: 8188615 [TBL] [Abstract][Full Text] [Related]
11. Examining the structural and chemical flexibility of the active site base, Lys-258, of Escherichia coli aspartate aminotransferase by replacement with unnatural amino acids. Gloss LM; Kirsch JF Biochemistry; 1995 Sep; 34(38):12323-32. PubMed ID: 7547975 [TBL] [Abstract][Full Text] [Related]
12. Identification of active site residues in E. coli ketopantoate reductase by mutagenesis and chemical rescue. Zheng R; Blanchard JS Biochemistry; 2000 Dec; 39(51):16244-51. PubMed ID: 11123955 [TBL] [Abstract][Full Text] [Related]
13. Site-directed mutagenesis of Escherichia coli aspartate aminotransferase: role of Tyr70 in the catalytic processes. Inoue K; Kuramitsu S; Okamoto A; Hirotsu K; Higuchi T; Kagamiyama H Biochemistry; 1991 Aug; 30(31):7796-801. PubMed ID: 1868057 [TBL] [Abstract][Full Text] [Related]
14. Redesign of the substrate specificity of Escherichia coli aspartate aminotransferase to that of Escherichia coli tyrosine aminotransferase by homology modeling and site-directed mutagenesis. Onuffer JJ; Kirsch JF Protein Sci; 1995 Sep; 4(9):1750-7. PubMed ID: 8528073 [TBL] [Abstract][Full Text] [Related]
15. Aspartate aminotransferase of E. coli: effects of site-directed mutagenesis on substrate recognition. Kagamiyama H J Nutr Sci Vitaminol (Tokyo); 1992; Spec No():216-9. PubMed ID: 1297744 [TBL] [Abstract][Full Text] [Related]
16. Structure and mechanism of a cysteine sulfinate desulfinase engineered on the aspartate aminotransferase scaffold. Fernandez FJ; de Vries D; Peña-Soler E; Coll M; Christen P; Gehring H; Vega MC Biochim Biophys Acta; 2012 Feb; 1824(2):339-49. PubMed ID: 22138634 [TBL] [Abstract][Full Text] [Related]
17. Reaction of aspartate aminotransferase with L-erythro-3-hydroxyaspartate: involvement of Tyr70 in stabilization of the catalytic intermediates. Hayashi H; Kagamiyama H Biochemistry; 1995 Jul; 34(29):9413-23. PubMed ID: 7626611 [TBL] [Abstract][Full Text] [Related]
18. Tyr225 in aspartate aminotransferase: contribution of the hydrogen bond between Tyr225 and coenzyme to the catalytic reaction. Inoue K; Kuramitsu S; Okamoto A; Hirotsu K; Higuchi T; Morino Y; Kagamiyama H J Biochem; 1991 Apr; 109(4):570-6. PubMed ID: 1869510 [TBL] [Abstract][Full Text] [Related]
19. Structural basis for the catalytic activity of aspartate aminotransferase K258H lacking the pyridoxal 5'-phosphate-binding lysine residue. Malashkevich VN; Jäger J; Ziak M; Sauder U; Gehring H; Christen P; Jansonius JN Biochemistry; 1995 Jan; 34(2):405-14. PubMed ID: 7819232 [TBL] [Abstract][Full Text] [Related]
20. Use of site-directed mutagenesis and alternative substrates to assign the prototropic groups important to catalysis by Escherichia coli aspartate aminotransferase. Gloss LM; Kirsch JF Biochemistry; 1995 Mar; 34(12):3999-4007. PubMed ID: 7696265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]