BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

571 related articles for article (PubMed ID: 25389242)

  • 1. Spatial correlation of high density EMG signals provides features robust to electrode number and shift in pattern recognition for myocontrol.
    Stango A; Negro F; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):189-98. PubMed ID: 25389242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Improved Gray-Level Co-Occurrence Matrix With High Density Grid for Myoelectric Control Robustness to Electrode Shift.
    He J; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1539-1548. PubMed ID: 28026779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving robustness against electrode shift of high density EMG for myoelectric control through common spatial patterns.
    Pan L; Zhang D; Jiang N; Sheng X; Zhu X
    J Neuroeng Rehabil; 2015 Dec; 12():110. PubMed ID: 26631105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing classification accuracy degradation of pattern recognition based myoelectric control caused by electrode shift using a high density electrode array.
    Boschmann A; Platzner M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4324-7. PubMed ID: 23366884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation.
    Vidovic MM; Hwang HJ; Amsuss S; Hahne JM; Farina D; Muller KR
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):961-970. PubMed ID: 26513794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients.
    Tkach DC; Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):727-34. PubMed ID: 24760931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of isometric contractions based on High Density EMG maps.
    Rojas-Martínez M; Mañanas MA; Alonso JF; Merletti R
    J Electromyogr Kinesiol; 2013 Feb; 23(1):33-42. PubMed ID: 22819519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature dimensionality reduction for myoelectric pattern recognition: a comparison study of feature selection and feature projection methods.
    Liu J
    Med Eng Phys; 2014 Dec; 36(12):1716-20. PubMed ID: 25292451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel channel selection method for multiple motion classification using high-density electromyography.
    Geng Y; Zhang X; Zhang YT; Li G
    Biomed Eng Online; 2014 Jul; 13():102. PubMed ID: 25060509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of stability of time-domain features for electromyographic pattern recognition.
    Tkach D; Huang H; Kuiken TA
    J Neuroeng Rehabil; 2010 May; 7():21. PubMed ID: 20492713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EMG feature assessment for myoelectric pattern recognition and channel selection: a study with incomplete spinal cord injury.
    Liu J; Li X; Li G; Zhou P
    Med Eng Phys; 2014 Jul; 36(7):975-80. PubMed ID: 24844608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface electromyogram analysis of the direction of isometric torque generation by the first dorsal interosseous muscle.
    Zhou P; Suresh NL; Rymer WZ
    J Neural Eng; 2011 Jun; 8(3):036028. PubMed ID: 21566274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control.
    Daley H; Englehart K; Hargrove L; Kuruganti U
    J Electromyogr Kinesiol; 2012 Jun; 22(3):478-84. PubMed ID: 22269773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feature extraction of the first difference of EMG time series for EMG pattern recognition.
    Phinyomark A; Quaine F; Charbonnier S; Serviere C; Tarpin-Bernard F; Laurillau Y
    Comput Methods Programs Biomed; 2014 Nov; 117(2):247-56. PubMed ID: 25023536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface versus untargeted intramuscular EMG based classification of simultaneous and dynamically changing movements.
    Kamavuako EN; Rosenvang JC; Horup R; Jensen W; Farina D; Englehart KB
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):992-8. PubMed ID: 23481867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control.
    He J; Zhang D; Jiang N; Sheng X; Farina D; Zhu X
    J Neural Eng; 2015 Aug; 12(4):046005. PubMed ID: 26028132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of contaminant type in surface electromyography (EMG) signals.
    McCool P; Fraser GD; Chan AD; Petropoulakis L; Soraghan JJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):774-83. PubMed ID: 24760926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-density surface EMG maps from upper-arm and forearm muscles.
    Rojas-Martínez M; Mañanas MA; Alonso JF
    J Neuroeng Rehabil; 2012 Dec; 9():85. PubMed ID: 23216679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Framework of Temporal-Spatial Descriptors-Based Feature Extraction for Improved Myoelectric Pattern Recognition.
    Khushaba RN; Al-Timemy AH; Al-Ani A; Al-Jumaily A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1821-1831. PubMed ID: 28358690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial distribution of HD-EMG improves identification of task and force in patients with incomplete spinal cord injury.
    Jordanic M; Rojas-Martínez M; Mañanas MA; Alonso JF
    J Neuroeng Rehabil; 2016 Apr; 13(1):41. PubMed ID: 27129309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.