These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 25389245)
21. Cross-Modal Subspace Learning via Pairwise Constraints. He R; Zhang M; Wang L; Ji Y; Yin Q IEEE Trans Image Process; 2015 Dec; 24(12):5543-56. PubMed ID: 26259218 [TBL] [Abstract][Full Text] [Related]
22. Physics-conforming constraints-oriented numerical method. Ahusborde E; Gruber R; Azaiez M; Sawley ML Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056704. PubMed ID: 17677195 [TBL] [Abstract][Full Text] [Related]
23. Time optimal controls of the linear Fitzhugh-Nagumo equation with pointwise control constraints. Kunisch K; Wang L J Math Anal Appl; 2012 Nov; 395(1):114-130. PubMed ID: 23576818 [TBL] [Abstract][Full Text] [Related]
24. On the Strong Subregularity of the Optimality Mapping in an Optimal Control Problem with Pointwise Inequality Control Constraints. Osmolovskii NP; Veliov VM Appl Math Optim; 2023; 87(3):43. PubMed ID: 36937241 [TBL] [Abstract][Full Text] [Related]
25. Reinforcement-Learning-Based Robust Controller Design for Continuous-Time Uncertain Nonlinear Systems Subject to Input Constraints. Liu D; Yang X; Wang D; Wei Q IEEE Trans Cybern; 2015 Jul; 45(7):1372-85. PubMed ID: 25872221 [TBL] [Abstract][Full Text] [Related]
26. Learning algorithms based on linearization. Hahnloser R Network; 1998 Aug; 9(3):363-80. PubMed ID: 9861996 [TBL] [Abstract][Full Text] [Related]
27. A policy iteration approach to online optimal control of continuous-time constrained-input systems. Modares H; Naghibi Sistani MB; Lewis FL ISA Trans; 2013 Sep; 52(5):611-21. PubMed ID: 23706414 [TBL] [Abstract][Full Text] [Related]
28. Asynchronous Distributed Learning From Constraints. Farina F; Melacci S; Garulli A; Giannitrapani A IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):4367-4373. PubMed ID: 31722500 [TBL] [Abstract][Full Text] [Related]
30. Density of convex intersections and applications. Hintermüller M; Rautenberg CN; Rösel S Proc Math Phys Eng Sci; 2017 Sep; 473(2205):20160919. PubMed ID: 28989301 [TBL] [Abstract][Full Text] [Related]
31. Interactive mesh cutting using constrained random walks. Zhang J; Zheng J; Cai J IEEE Trans Vis Comput Graph; 2011 Mar; 17(3):357-67. PubMed ID: 20421684 [TBL] [Abstract][Full Text] [Related]
32. Solving multiconstraint assignment problems using learning automata. Horn G; Oommen BJ IEEE Trans Syst Man Cybern B Cybern; 2010 Feb; 40(1):6-18. PubMed ID: 19884057 [TBL] [Abstract][Full Text] [Related]
33. Reinforcement learning versus model predictive control: a comparison on a power system problem. Ernst D; Glavic M; Capitanescu F; Wehenkel L IEEE Trans Syst Man Cybern B Cybern; 2009 Apr; 39(2):517-29. PubMed ID: 19095542 [TBL] [Abstract][Full Text] [Related]
34. Point set registration: coherent point drift. Myronenko A; Song X IEEE Trans Pattern Anal Mach Intell; 2010 Dec; 32(12):2262-75. PubMed ID: 20975122 [TBL] [Abstract][Full Text] [Related]
35. A New Continuous-Time Equality-Constrained Optimization to Avoid Singularity. Quan Q; Cai KY IEEE Trans Neural Netw Learn Syst; 2016 Feb; 27(2):262-72. PubMed ID: 26415188 [TBL] [Abstract][Full Text] [Related]
36. Fluence map optimization (FMO) with dose-volume constraints in IMRT using the geometric distance sorting method. Lan Y; Li C; Ren H; Zhang Y; Min Z Phys Med Biol; 2012 Oct; 57(20):6407-28. PubMed ID: 22996086 [TBL] [Abstract][Full Text] [Related]
37. On the effects of hard and soft equality constraints in the iterative outlier elimination procedure. Rofatto VF; Matsuoka MT; Klein I; Veronez MR; da Silveira LG PLoS One; 2020; 15(8):e0238145. PubMed ID: 32845919 [TBL] [Abstract][Full Text] [Related]
38. Variational properties of the discrete variable representation: discrete variable representation via effective operators. Szalay V; Ádám P J Chem Phys; 2012 Aug; 137(6):064118. PubMed ID: 22897266 [TBL] [Abstract][Full Text] [Related]
39. Semi-supervised and unsupervised extreme learning machines. Huang G; Song S; Gupta JN; Wu C IEEE Trans Cybern; 2014 Dec; 44(12):2405-17. PubMed ID: 25415946 [TBL] [Abstract][Full Text] [Related]
40. SemiBoost: boosting for semi-supervised learning. Mallapragada PK; Jin R; Jain AK; Liu Y IEEE Trans Pattern Anal Mach Intell; 2009 Nov; 31(11):2000-14. PubMed ID: 19762927 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]