These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 25389571)

  • 1. Specific ion and buffer effects on protein-protein interactions of a monoclonal antibody.
    Roberts D; Keeling R; Tracka M; van der Walle CF; Uddin S; Warwicker J; Curtis R
    Mol Pharm; 2015 Jan; 12(1):179-93. PubMed ID: 25389571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of electrostatics in protein-protein interactions of a monoclonal antibody.
    Roberts D; Keeling R; Tracka M; van der Walle CF; Uddin S; Warwicker J; Curtis R
    Mol Pharm; 2014 Jul; 11(7):2475-89. PubMed ID: 24892385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of sulphate, chloride, and thiocyanate salts on formation of β-lactoglobulin-pectin microgels.
    Hirt S; Jones OG; Adijanto M; Gilbert J
    Food Chem; 2014 Dec; 164():63-9. PubMed ID: 24996306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No salting-in of lysozyme chloride observed at low ionic strength over a large range of pH.
    Retailleau P; Riès-Kautt M; Ducruix A
    Biophys J; 1997 Oct; 73(4):2156-63. PubMed ID: 9336211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of Protein-Protein Interactions in a Mixture of Two Monoclonal Antibodies.
    Singh P; Roche A; van der Walle CF; Uddin S; Du J; Warwicker J; Pluen A; Curtis R
    Mol Pharm; 2019 Dec; 16(12):4775-4786. PubMed ID: 31613625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt screening and specific ion adsorption determine neutral-lipid membrane interactions.
    Petrache HI; Zemb T; Belloni L; Parsegian VA
    Proc Natl Acad Sci U S A; 2006 May; 103(21):7982-7. PubMed ID: 16702553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific ion effects: why the properties of lysozyme in salt solutions follow a Hofmeister series.
    Boström M; Williams DR; Ninham BW
    Biophys J; 2003 Aug; 85(2):686-94. PubMed ID: 12885620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid-liquid phase separation of a monoclonal antibody and nonmonotonic influence of Hofmeister anions.
    Mason BD; Zhang-van Enk J; Zhang L; Remmele RL; Zhang J
    Biophys J; 2010 Dec; 99(11):3792-800. PubMed ID: 21112304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of salt additives on protein partition in polyethylene glycol-sodium sulfate aqueous two-phase systems.
    Ferreira L; Madeira PP; Mikheeva L; Uversky VN; Zaslavsky B
    Biochim Biophys Acta; 2013 Dec; 1834(12):2859-66. PubMed ID: 23920121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution.
    Liu J; Nguyen MD; Andya JD; Shire SJ
    J Pharm Sci; 2005 Sep; 94(9):1928-40. PubMed ID: 16052543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From repulsion to attraction and back to repulsion: the effect of NaCl, KCl, and CsCl on the force between silica surfaces in aqueous solution.
    Dishon M; Zohar O; Sivan U
    Langmuir; 2009 Mar; 25(5):2831-6. PubMed ID: 19437699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Hofmeister Ions on Transport Properties of Aqueous Solutions of Sodium Hyaluronate.
    Musilová L; Mráček A; Kašpárková V; Minařík A; Valente AJM; Azevedo EFG; Veríssimo LMP; Rodrigo MM; Esteso MA; Ribeiro ACF
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33669232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the role of salt type and concentration on the stability behavior of a monoclonal antibody solution.
    Arosio P; Jaquet B; Wu H; Morbidelli M
    Biophys Chem; 2012 Jul; 168-169():19-27. PubMed ID: 22750560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid-liquid phase separation of a monoclonal antibody at low ionic strength: Influence of anion charge and concentration.
    Reiche K; Hartl J; Blume A; Garidel P
    Biophys Chem; 2017 Jan; 220():7-19. PubMed ID: 27838577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibody solubility behavior in monovalent salt solutions reveals specific anion effects at low ionic strength.
    Zhang L; Tan H; Fesinmeyer RM; Li C; Catrone D; Le D; Remmele RL; Zhang J
    J Pharm Sci; 2012 Mar; 101(3):965-77. PubMed ID: 22113783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The osmotic pressure of highly concentrated monoclonal antibody solutions: effect of solution conditions.
    Binabaji E; Rao S; Zydney AL
    Biotechnol Bioeng; 2014 Mar; 111(3):529-36. PubMed ID: 23996891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Arginine Salts on the Thermal Stability and Aggregation Kinetics of Monoclonal Antibody: Dominant Role of Anions.
    Zhang J; Frey V; Corcoran M; Zhang-van Enk J; Subramony JA
    Mol Pharm; 2016 Oct; 13(10):3362-3369. PubMed ID: 27541006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Buffer capacity of biologics--from buffer salts to buffering by antibodies.
    Karow AR; Bahrenburg S; Garidel P
    Biotechnol Prog; 2013; 29(2):480-92. PubMed ID: 23296746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific ion-protein interactions dictate solubility behavior of a monoclonal antibody at low salt concentrations.
    Zhang L; Zhang J
    Mol Pharm; 2012 Sep; 9(9):2582-90. PubMed ID: 22835004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein interactions studied by SAXS: effect of ionic strength and protein concentration for BSA in aqueous solutions.
    Zhang F; Skoda MW; Jacobs RM; Martin RA; Martin CM; Schreiber F
    J Phys Chem B; 2007 Jan; 111(1):251-9. PubMed ID: 17201449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.