BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25389703)

  • 1. Segmentation and classification of capnograms: application in respiratory variability analysis.
    Herry CL; Townsend D; Green GC; Bravi A; Seely AJ
    Physiol Meas; 2014 Dec; 35(12):2343-58. PubMed ID: 25389703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated quantitative analysis of capnogram shape for COPD-normal and COPD-CHF classification.
    Mieloszyk RJ; Verghese GC; Deitch K; Cooney B; Khalid A; Mirre-Gonzalez MA; Heldt T; Krauss BS
    IEEE Trans Biomed Eng; 2014 Dec; 61(12):2882-90. PubMed ID: 24967981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using the features of the time and volumetric capnogram for classification and prediction.
    Jaffe MB
    J Clin Monit Comput; 2017 Feb; 31(1):19-41. PubMed ID: 26780902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-Based Estimation of Respiratory Parameters from Capnography, With Application to Diagnosing Obstructive Lung Disease.
    Abid A; Mieloszyk RJ; Verghese GC; Krauss BS; Heldt T
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2957-2967. PubMed ID: 28475040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing ventilation detection during cardiopulmonary resuscitation by filtering chest compression artifact from the capnography waveform.
    Gutiérrez JJ; Leturiondo M; Ruiz de Gauna S; Ruiz JM; Leturiondo LA; González-Otero DM; Zive D; Russell JK; Daya M
    PLoS One; 2018; 13(8):e0201565. PubMed ID: 30071008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining segments and phases of a time capnogram.
    Bhavani-Shankar K; Philip JH
    Anesth Analg; 2000 Oct; 91(4):973-7. PubMed ID: 11004059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic classification of regular and irregular capnogram segments using time- and frequency-domain features: A machine learning-based approach.
    El-Badawy IM; Singh OP; Omar Z
    Technol Health Care; 2021; 29(1):59-72. PubMed ID: 32716337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Description of an assembled noninvasive capnography setup.
    Le Cong M; Mohan A
    Air Med J; 2013; 32(6):343-5. PubMed ID: 24182884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of capnography using a genetic algorithm to predict PaCO2.
    Engoren M; Plewa M; O'Hara D; Kline JA
    Chest; 2005 Feb; 127(2):579-84. PubMed ID: 15705999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volumetric capnography: the time has come.
    Suarez-Sipmann F; Bohm SH; Tusman G
    Curr Opin Crit Care; 2014 Jun; 20(3):333-9. PubMed ID: 24785676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-assisted capnogram analysis.
    van Genderingen HR; Gravenstein N; van der Aa JJ; Gravenstein JS
    J Clin Monit; 1987 Jul; 3(3):194-200. PubMed ID: 3112319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective method for quantifying respiratory effective method for quantifying respiratory subsequent marker of anxiety.
    Myers LJ; Derchak PA
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6601-4. PubMed ID: 17959463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency analysis of capnogram signals to differentiate asthmatic and non-asthmatic conditions using radial basis function neural networks.
    Kazemi M; Bala Krishnan M; Aik Howe T
    Iran J Allergy Asthma Immunol; 2013 Jul; 12(3):236-46. PubMed ID: 23893807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capnographic waveforms in the mechanically ventilated patient.
    Thompson JE; Jaffe MB
    Respir Care; 2005 Jan; 50(1):100-8; discussion 108-9. PubMed ID: 15636648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation and clinical application of a continuous P0.1 measurement using standard respiratory equipment.
    Kuhlen R; Mohnhaupt R; Slama K; Hausmann S; Pappert D; Rossaint R; Falke K
    Technol Health Care; 1996 Dec; 4(4):415-24. PubMed ID: 9042692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Algorithms to qualify respiratory data collected during the transport of trauma patients.
    Chen L; McKenna T; Reisner A; Reifman J
    Physiol Meas; 2006 Sep; 27(9):797-816. PubMed ID: 16868347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of neonatal respiratory rate variability.
    Coleman J; Ginsburg AS; Macharia WM; Ochieng R; Chomba D; Zhou G; Dunsmuir D; Karlen W; Ansermino JM
    J Clin Monit Comput; 2022 Dec; 36(6):1869-1879. PubMed ID: 35332406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory brainstem response classification: a hybrid model using time and frequency features.
    Davey R; McCullagh P; Lightbody G; McAllister G
    Artif Intell Med; 2007 May; 40(1):1-14. PubMed ID: 16930965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of cardiogenic artifact in pediatric capnograms.
    Smith TC; Green A; Hutton P
    J Clin Monit; 1994 Jul; 10(4):270-5. PubMed ID: 7931459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Enhanced Mechanistic Model For Capnography, With Application To CHF-COPD Discrimination.
    Karasan E; Abid A; Mieloszyk RJ; Krauss BS; Heldt T; Verghese GC
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5267-5272. PubMed ID: 30441526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.