These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25389703)

  • 21. Microstream capnography improves patient monitoring during moderate sedation: a randomized, controlled trial.
    Lightdale JR; Goldmann DA; Feldman HA; Newburg AR; DiNardo JA; Fox VL
    Pediatrics; 2006 Jun; 117(6):e1170-8. PubMed ID: 16702250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility of continuous multiorgan variability analysis in the intensive care unit.
    Bradley B; Green GC; Batkin I; Seely AJ
    J Crit Care; 2012 Apr; 27(2):218.e9-20. PubMed ID: 22172799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Considerations for developing a clinical capnogram monitoring system.
    Goldman JM
    Biomed Sci Instrum; 1997; 34():197-200. PubMed ID: 9603038
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-spectral brain tissue segmentation using automatically trained k-Nearest-Neighbor classification.
    Vrooman HA; Cocosco CA; van der Lijn F; Stokking R; Ikram MA; Vernooij MW; Breteler MM; Niessen WJ
    Neuroimage; 2007 Aug; 37(1):71-81. PubMed ID: 17572111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Observations on respiratory flow strategies during and after intense treadmill exercise to fatigue in thoroughbred racehorses.
    Curtis RA; Kusano K; Evans DL
    Equine Vet J Suppl; 2006 Aug; (36):567-72. PubMed ID: 17402485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accuracy of acoustic respiration rate monitoring in pediatric patients.
    Patino M; Redford DT; Quigley TW; Mahmoud M; Kurth CD; Szmuk P
    Paediatr Anaesth; 2013 Dec; 23(12):1166-73. PubMed ID: 24033591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-Order Mechanistic Models for Volumetric and Temporal Capnography: Development, Validation, and Application.
    Murray EK; You CX; Verghese GC; Krauss BS; Heldt T
    IEEE Trans Biomed Eng; 2023 Sep; 70(9):2710-2721. PubMed ID: 37030832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Application of wavelet analysis in pick-up of breath signal from oscillations in chest wall].
    Yang Y; Zhao G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):65-9. PubMed ID: 22404009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Capnography for bronchoscopy with rigid technique using high frequency jet ventilation (HFJV)].
    Klein U; Gottschall R; Hannemann U; Kämpf R; Knebel FG; Schönherr V
    Anasthesiol Intensivmed Notfallmed Schmerzther; 1995 Aug; 30(5):276-82. PubMed ID: 7548478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated respiratory cycles selection is highly specific and improves respiratory mechanics analysis.
    Rigo V; Graas E; Rigo J
    Pediatr Crit Care Med; 2012 Jul; 13(4):e234-9. PubMed ID: 22067983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Creation of a Robust and Generalizable Machine Learning Classifier for Patient Ventilator Asynchrony.
    Rehm GB; Han J; Kuhn BT; Delplanque JP; Anderson NR; Adams JY; Chuah CN
    Methods Inf Med; 2018 Sep; 57(4):208-219. PubMed ID: 30919393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diagnostic utility of capnography in emergency department triage for screening acidemia: a pilot study.
    Peng P; Manini AF
    Int J Emerg Med; 2024 Apr; 17(1):57. PubMed ID: 38649817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accurate segmentation of respiration waveforms from infants enabling identification and classification of irregular breathing patterns.
    Wilks PA; English MJ
    Med Eng Phys; 1994 Jan; 16(1):19-23. PubMed ID: 8162260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A respiratory monitoring device based on clavicular motion.
    Pitts DG; Patel MK; Lang PO; Sinclair AJ; Aspinall R
    Physiol Meas; 2013 Aug; 34(8):N51-61. PubMed ID: 23860005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of respiratory kinematics: a method to characterize breaths from motion signals.
    Ashe WB; Innis SE; Shanno JN; Hochheimer CJ; Williams RD; Ratcliffe SJ; Moorman JR; Gadrey SM
    Physiol Meas; 2022 Feb; 43(1):. PubMed ID: 35045405
    [No Abstract]   [Full Text] [Related]  

  • 36. Two-stage approach for detection and reduction of motion artifacts in photoplethysmographic data.
    Krishnan R; Natarajan BB; Warren S
    IEEE Trans Biomed Eng; 2010 Aug; 57(8):1867-76. PubMed ID: 20172800
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Capnography in spontaneously breathing preterm infants with bronchopulmonary dysplasia.
    Lopez E; Mathlouthi J; Lescure S; Krauss B; Jarreau PH; Moriette G
    Pediatr Pulmonol; 2011 Sep; 46(9):896-902. PubMed ID: 21465676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Can simple mobile phone applications provide reliable counts of respiratory rates in sick infants and children? An initial evaluation of three new applications.
    Black J; Gerdtz M; Nicholson P; Crellin D; Browning L; Simpson J; Bell L; Santamaria N
    Int J Nurs Stud; 2015 May; 52(5):963-9. PubMed ID: 25712876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Principal component analysis as a tool for analyzing beat-to-beat changes in ECG features: application to ECG-derived respiration.
    Langley P; Bowers EJ; Murray A
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):821-9. PubMed ID: 19362906
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variability of respiratory rate measurements in neonates- every minute counts.
    Njeru CM; Ansermino JM; Macharia WM; Dunsmuir DT
    BMC Pediatr; 2022 Jan; 22(1):16. PubMed ID: 34980049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.