BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25389798)

  • 41. X-ray structure of the ferredoxin:NADP+ reductase from the cyanobacterium Anabaena PCC 7119 at 1.8 A resolution, and crystallographic studies of NADP+ binding at 2.25 A resolution.
    Serre L; Vellieux FM; Medina M; Gomez-Moreno C; Fontecilla-Camps JC; Frey M
    J Mol Biol; 1996 Oct; 263(1):20-39. PubMed ID: 8890910
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular simulation of flavin adenine dinucleotide immobilized on charged single-walled carbon nanotubes for biosensor applications.
    Yang G; Kang Z; Ye X; Wu T; Zhu Q
    Biomaterials; 2012 Dec; 33(34):8757-70. PubMed ID: 22975425
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oxygen reactions in p-hydroxybenzoate hydroxylase utilize the H-bond network during catalysis.
    Ortiz-Maldonado M; Entsch B; Ballou DP
    Biochemistry; 2004 Dec; 43(48):15246-57. PubMed ID: 15568817
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Crystal structure of the reduced form of p-hydroxybenzoate hydroxylase refined at 2.3 A resolution.
    Schreuder HA; van der Laan JM; Swarte MB; Kalk KH; Hol WG; Drenth J
    Proteins; 1992 Oct; 14(2):178-90. PubMed ID: 1409567
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The intraflavin hydrogen bond in human electron transfer flavoprotein modulates redox potentials and may participate in electron transfer.
    Dwyer TM; Mortl S; Kemter K; Bacher A; Fauq A; Frerman FE
    Biochemistry; 1999 Jul; 38(30):9735-45. PubMed ID: 10423253
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Redox properties of the isolated flavin mononucleotide- and flavin adenine dinucleotide-binding domains of neuronal nitric oxide synthase.
    Garnaud PE; Koetsier M; Ost TW; Daff S
    Biochemistry; 2004 Aug; 43(34):11035-44. PubMed ID: 15323562
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DNA apophotolyase from Anacystis nidulans: 1.8 A structure, 8-HDF reconstitution and X-ray-induced FAD reduction.
    Kort R; Komori H; Adachi S; Miki K; Eker A
    Acta Crystallogr D Biol Crystallogr; 2004 Jul; 60(Pt 7):1205-13. PubMed ID: 15213381
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Flavin adenine dinucleotide chromophore charge controls the conformation of cyclobutane pyrimidine dimer photolyase α-helices.
    Wijaya IM; Iwata T; Yamamoto J; Hitomi K; Iwai S; Getzoff ED; Kennis JT; Mathes T; Kandori H
    Biochemistry; 2014 Sep; 53(37):5864-75. PubMed ID: 25152314
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Crystal structure of p-hydroxybenzoate hydroxylase reconstituted with the modified FAD present in alcohol oxidase from methylotrophic yeasts: evidence for an arabinoflavin.
    van Berkel WJ; Eppink MH; Schreuder HA
    Protein Sci; 1994 Dec; 3(12):2245-53. PubMed ID: 7756982
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Histidine 61: an important heme ligand in the soluble fumarate reductase from Shewanella frigidimarina.
    Rothery EL; Mowat CG; Miles CS; Walkinshaw MD; Reid GA; Chapman SK
    Biochemistry; 2003 Nov; 42(45):13160-9. PubMed ID: 14609326
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Insights on the structural perturbations in human MTHFR Ala222Val mutant by protein modeling and molecular dynamics.
    Abhinand PA; Shaikh F; Bhakat S; Radadiya A; Bhaskar LV; Shah A; Ragunath PK
    J Biomol Struct Dyn; 2016; 34(4):892-905. PubMed ID: 26273990
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure-based redesign of cofactor binding in putrescine oxidase.
    Kopacz MM; Rovida S; van Duijn E; Fraaije MW; Mattevi A
    Biochemistry; 2011 May; 50(19):4209-17. PubMed ID: 21486042
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-resolution structures of cholesterol oxidase in the reduced state provide insights into redox stabilization.
    Golden E; Karton A; Vrielink A
    Acta Crystallogr D Biol Crystallogr; 2014 Dec; 70(Pt 12):3155-66. PubMed ID: 25478834
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The structure of the S127P mutant of cytochrome b5 reductase that causes methemoglobinemia shows the AMP moiety of the flavin occupying the substrate binding site.
    Bewley MC; Davis CA; Marohnic CC; Taormina D; Barber MJ
    Biochemistry; 2003 Nov; 42(45):13145-51. PubMed ID: 14609324
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electropolymerized flavin adenine dinucleotide as an advanced NADH transducer.
    Karyakin AA; Ivanova YN; Revunova KV; Karyakina EE
    Anal Chem; 2004 Apr; 76(7):2004-9. PubMed ID: 15053664
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantitation of FAD-dependent cytochrome P450 reductase activity by photoreduction.
    Hodgson AV; Strobel HW
    Anal Biochem; 1996 Dec; 243(1):154-7. PubMed ID: 8954538
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling of alcohol oxidase enzyme of Candida boidinii and in silico analysis of competitive binding of proton ionophores and FAD with enzyme.
    Khan MW; Murali A
    Mol Biosyst; 2017 Aug; 13(9):1754-1769. PubMed ID: 28692078
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional roles of the 6-S-cysteinyl, 8alpha-N1-histidyl FAD in glucooligosaccharide oxidase from Acremonium strictum.
    Huang CH; Winkler A; Chen CL; Lai WL; Tsai YC; Macheroux P; Liaw SH
    J Biol Chem; 2008 Nov; 283(45):30990-6. PubMed ID: 18768475
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Trapping conformational states of a flavin-dependent
    Campbell AC; Stiers KM; Martin Del Campo JS; Mehra-Chaudhary R; Sobrado P; Tanner JJ
    J Biol Chem; 2020 Sep; 295(38):13239-13249. PubMed ID: 32723870
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mining the Dynamical Properties of Substrate and FAD Binding Pockets of LSD1: Hints for New Inhibitor Design Direction.
    Yang K; Liu H
    J Chem Inf Model; 2024 Jun; 64(12):4773-4780. PubMed ID: 38837697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.