These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25390365)

  • 1. Adaptive robotic control driven by a versatile spiking cerebellar network.
    Casellato C; Antonietti A; Garrido JA; Carrillo RR; Luque NR; Ros E; Pedrocchi A; D'Angelo E
    PLoS One; 2014; 9(11):e112265. PubMed ID: 25390365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.
    Antonietti A; Casellato C; D'Angelo E; Pedrocchi A
    IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2748-2762. PubMed ID: 27608482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of a Humanoid NAO Robot by an Adaptive Bioinspired Cerebellar Module in 3D Motion Tasks.
    Antonietti A; Martina D; Casellato C; D'Angelo E; Pedrocchi A
    Comput Intell Neurosci; 2019; 2019():4862157. PubMed ID: 30833964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks.
    Casellato C; Antonietti A; Garrido JA; Ferrigno G; D'Angelo E; Pedrocchi A
    Front Comput Neurosci; 2015; 9():24. PubMed ID: 25762922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation.
    Inagaki K; Hirata Y
    Cerebellum; 2017 Aug; 16(4):827-839. PubMed ID: 28444617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiking Neural Network With Distributed Plasticity Reproduces Cerebellar Learning in Eye Blink Conditioning Paradigms.
    Antonietti A; Casellato C; Garrido JA; Luque NR; Naveros F; Ros E; D' Angelo E; Pedrocchi A
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):210-9. PubMed ID: 26441441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies.
    Geminiani A; Casellato C; Antonietti A; D'Angelo E; Pedrocchi A
    Int J Neural Syst; 2018 Jun; 28(5):1750017. PubMed ID: 28264639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Redistribution of Plasticity in a Cerebellar Spiking Neural Network Reproducing an Associative Learning Task Perturbed by TMS.
    Antonietti A; Monaco J; D'Angelo E; Pedrocchi A; Casellato C
    Int J Neural Syst; 2018 Nov; 28(9):1850020. PubMed ID: 29914314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.
    Xu T; Xiao N; Zhai X; Kwan Chan P; Tin C
    J Neural Eng; 2018 Feb; 15(1):016021. PubMed ID: 29115280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cerebellar-based solution to the nondeterministic time delay problem in robotic control.
    Abadía I; Naveros F; Ros E; Carrillo RR; Luque NR
    Sci Robot; 2021 Sep; 6(58):eabf2756. PubMed ID: 34516748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bi-hemispheric neuronal network model of the cerebellum with spontaneous climbing fiber firing produces asymmetrical motor learning during robot control.
    Pinzon-Morales RD; Hirata Y
    Front Neural Circuits; 2014; 8():131. PubMed ID: 25414644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lock-and-key mechanisms of cerebellar memory recall based on rebound currents.
    Wetmore DZ; Mukamel EA; Schnitzer MJ
    J Neurophysiol; 2008 Oct; 100(4):2328-47. PubMed ID: 17671105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Principles of operation of a cerebellar learning circuit.
    Herzfeld DJ; Hall NJ; Tringides M; Lisberger SG
    Elife; 2020 Apr; 9():. PubMed ID: 32352914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cerebellum inspired spiking neural network as a multi-model for pattern classification and robotic trajectory prediction.
    Vijayan A; Diwakar S
    Front Neurosci; 2022; 16():909146. PubMed ID: 36518530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebellum Involvement in Dystonia During Associative Motor Learning: Insights From a Data-Driven Spiking Network Model.
    Geminiani A; Mockevičius A; D'Angelo E; Casellato C
    Front Syst Neurosci; 2022; 16():919761. PubMed ID: 35782305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On Robot Compliance: A Cerebellar Control Approach.
    Abadia I; Naveros F; Garrido JA; Ros E; Luque NR
    IEEE Trans Cybern; 2021 May; 51(5):2476-2489. PubMed ID: 31647453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A real-time spiking cerebellum model for learning robot control.
    Carrillo RR; Ros E; Boucheny C; Coenen OJ
    Biosystems; 2008; 94(1-2):18-27. PubMed ID: 18616974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cerebellum in action: a simulation and robotics study.
    Hofstötter C; Mintz M; Verschure PF
    Eur J Neurosci; 2002 Oct; 16(7):1361-76. PubMed ID: 12405996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive cerebellar spiking model embedded in the control loop: context switching and robustness against noise.
    Luque NR; Garrido JA; Carrillo RR; Tolu S; Ros E
    Int J Neural Syst; 2011 Oct; 21(5):385-401. PubMed ID: 21956931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.