BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25390896)

  • 1. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?
    Valente G; Pitto L; Testi D; Seth A; Delp SL; Stagni R; Viceconti M; Taddei F
    PLoS One; 2014; 9(11):e112625. PubMed ID: 25390896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location.
    Martelli S; Valente G; Viceconti M; Taddei F
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1555-63. PubMed ID: 24963785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of predicted muscle forces during gait to anatomical variability in musculotendon geometry.
    Bosmans L; Valente G; Wesseling M; Van Campen A; De Groote F; De Schutter J; Jonkers I
    J Biomech; 2015 Jul; 48(10):2116-23. PubMed ID: 25979383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant.
    Kim HJ; Fernandez JW; Akbarshahi M; Walter JP; Fregly BJ; Pandy MG
    J Orthop Res; 2009 Oct; 27(10):1326-31. PubMed ID: 19396858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of musculotendon geometry variability in muscle forces and hip bone-on-bone forces during walking.
    Martín-Sosa E; Martínez-Reina J; Mayo J; Ojeda J
    PLoS One; 2019; 14(9):e0222491. PubMed ID: 31553756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of lower-limb joint models on subject-specific musculoskeletal models and simulations of daily motor activities.
    Valente G; Pitto L; Stagni R; Taddei F
    J Biomech; 2015 Dec; 48(16):4198-205. PubMed ID: 26506255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait.
    Rajagopal A; Dembia CL; DeMers MS; Delp DD; Hicks JL; Delp SL
    IEEE Trans Biomed Eng; 2016 Oct; 63(10):2068-79. PubMed ID: 27392337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A probabilistic approach to quantify the impact of uncertainty propagation in musculoskeletal simulations.
    Myers CA; Laz PJ; Shelburne KB; Davidson BS
    Ann Biomed Eng; 2015 May; 43(5):1098-111. PubMed ID: 25404535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle synergies may improve optimization prediction of knee contact forces during walking.
    Walter JP; Kinney AL; Banks SA; D'Lima DD; Besier TF; Lloyd DG; Fregly BJ
    J Biomech Eng; 2014 Feb; 136(2):021031. PubMed ID: 24402438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling.
    Modenese L; Montefiori E; Wang A; Wesarg S; Viceconti M; Mazzà C
    J Biomech; 2018 May; 73():108-118. PubMed ID: 29673935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
    Gerus P; Sartori M; Besier TF; Fregly BJ; Delp SL; Banks SA; Pandy MG; D'Lima DD; Lloyd DG
    J Biomech; 2013 Nov; 46(16):2778-86. PubMed ID: 24074941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. To what extent is joint and muscle mechanics predicted by musculoskeletal models sensitive to soft tissue artefacts?
    Lamberto G; Martelli S; Cappozzo A; Mazzà C
    J Biomech; 2017 Sep; 62():68-76. PubMed ID: 27622973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of perturbing body segment parameters on calculated joint moments and muscle forces during gait.
    Wesseling M; de Groote F; Jonkers I
    J Biomech; 2014 Jan; 47(2):596-601. PubMed ID: 24332615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of In Vivo Knee Joint Loads Using a Global Probabilistic Analysis.
    Navacchia A; Myers CA; Rullkoetter PJ; Shelburne KB
    J Biomech Eng; 2016 Mar; 138(3):4032379. PubMed ID: 26720096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait.
    Michaud F; Lamas M; Lugrís U; Cuadrado J
    J Neuroeng Rehabil; 2021 Jan; 18(1):17. PubMed ID: 33509205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of weak hip abductor muscles on joint contact forces during normal walking: probabilistic modeling analysis.
    Valente G; Taddei F; Jonkers I
    J Biomech; 2013 Sep; 46(13):2186-93. PubMed ID: 23891175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Musculoskeletal Gait Simulation to Investigate Biomechanical Effect of Knee Brace.
    Yap YT; Gouwanda D; Gopalai AA; Chong YZ
    J Biomech Eng; 2023 Feb; 145(2):. PubMed ID: 36082472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking.
    Serrancolí G; Kinney AL; Fregly BJ; Font-Llagunes JM
    J Biomech Eng; 2016 Aug; 138(8):0810011-08100111. PubMed ID: 27210105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of maximum isometric muscle force scaling on estimated muscle forces from musculoskeletal models of children with cerebral palsy.
    Kainz H; Goudriaan M; Falisse A; Huenaerts C; Desloovere K; De Groote F; Jonkers I
    Gait Posture; 2018 Sep; 65():213-220. PubMed ID: 30558934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.