These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25391023)

  • 1. Traceable calibration, performance metrics, and uncertainty estimates of minirhizotron digital imagery for fine-root measurements.
    Roberti JA; SanClements MD; Loescher HW; Ayres E
    PLoS One; 2014; 9(11):e112362. PubMed ID: 25391023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing fine root research with minirhizotrons.
    Johnson MG; Tingey DT; Phillips DL; Storm MJ
    Environ Exp Bot; 2001 Jun; 45(3):263-289. PubMed ID: 11323033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. As good as human experts in detecting plant roots in minirhizotron images but efficient and reproducible: the convolutional neural network "RootDetector".
    Peters B; Blume-Werry G; Gillert A; Schwieger S; von Lukas UF; Kreyling J
    Sci Rep; 2023 Jan; 13(1):1399. PubMed ID: 36697423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconcilable differences: a joint calibration of fine-root turnover times with radiocarbon and minirhizotrons.
    Ahrens B; Hansson K; Solly EF; Schrumpf M
    New Phytol; 2014 Dec; 204(4):932-42. PubMed ID: 25196967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Application of minirhizotron in fine root studies].
    Shi J; Yu L; Yu S; Han Y; Wang Z; Guo D
    Ying Yong Sheng Tai Xue Bao; 2006 Apr; 17(4):715-9. PubMed ID: 16836108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EnRoot: a narrow-diameter, inexpensive and partially 3D-printable minirhizotron for imaging fine root production.
    Arnaud M; Baird AJ; Morris PJ; Harris A; Huck JJ
    Plant Methods; 2019; 15():101. PubMed ID: 31467587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Installation and imaging of thousands of minirhizotrons to phenotype root systems of field-grown plants.
    Rajurkar AB; McCoy SM; Ruhter J; Mulcrone J; Freyfogle L; Leakey ADB
    Plant Methods; 2022 Mar; 18(1):39. PubMed ID: 35346269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic discrimination of fine roots in minirhizotron images.
    Zeng G; Birchfield ST; Wells CE
    New Phytol; 2008; 177(2):549-557. PubMed ID: 18042202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3CCD camera's capability for measuring color differences: experiment in the nearly neutral region.
    Millán MS; Valencia E; Corbalán M
    Appl Opt; 2004 Dec; 43(36):6523-35. PubMed ID: 15646773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High frequency root dynamics: sampling and interpretation using replicated robotic minirhizotrons.
    Nair R; Strube M; Hertel M; Kolle O; Rolo V; Migliavacca M
    J Exp Bot; 2023 Feb; 74(3):769-786. PubMed ID: 36273326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flower colours through the lens: quantitative measurement with visible and ultraviolet digital photography.
    Garcia JE; Greentree AD; Shrestha M; Dorin A; Dyer AG
    PLoS One; 2014; 9(5):e96646. PubMed ID: 24827828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive minirhizotron for pepper roots observation and its installation based on root system architecture traits.
    Lu W; Wang X; Wang F
    Plant Methods; 2019; 15():29. PubMed ID: 30949230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic segmentation of cotton roots in high-resolution minirhizotron images based on improved OCRNet.
    Huang Y; Yan J; Zhang Y; Ye W; Zhang C; Gao P; Lv X
    Front Plant Sci; 2023; 14():1147034. PubMed ID: 37235030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital vs 35-mm photography. To convert or not to convert?
    Kokoska MS; Currens JW; Hollenbeak CS; Thomas JR; Stack BC
    Arch Facial Plast Surg; 1999; 1(4):276-81. PubMed ID: 10937115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods.
    Guo D; Li H; Mitchell RJ; Han W; Hendricks JJ; Fahey TJ; Hendrick RL
    New Phytol; 2008; 177(2):443-456. PubMed ID: 17944827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ways to increase precision and accuracy of wound area measurement using smart devices: Advanced app Planimator.
    Foltynski P
    PLoS One; 2018; 13(3):e0192485. PubMed ID: 29505569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can light-field photography ease focusing on the scalp and oral cavity?
    Taheri A; Feldman SR
    Skin Res Technol; 2013 Aug; 19(3):288-90. PubMed ID: 23331377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of material used for minirhizotron tubes for root research.
    Withington JM; Elkin AD; Bułaj B; Olesiński J; Tracy KN; Bouma TJ; Oleksyn J; Anderson LJ; Modrzyński J; Reich PB; Eissenstat DM
    New Phytol; 2003 Dec; 160(3):533-544. PubMed ID: 33873660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital camera simulation.
    Farrell JE; Catrysse PB; Wandell BA
    Appl Opt; 2012 Feb; 51(4):A80-90. PubMed ID: 22307132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SoilCam: A Fully Automated Minirhizotron using Multispectral Imaging for Root Activity Monitoring.
    Rahman G; Sohag H; Chowdhury R; Wahid KA; Dinh A; Arcand M; Vail S
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32023975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.