These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 2539135)

  • 21. Regulation of liver base-exchange activity by acidic phospholipids.
    Zborowski J; Corazzi L; Arienti G
    Biosci Rep; 1991 Oct; 11(5):231-6. PubMed ID: 1790314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conversion of ethanolamine, monomethylethanolamine and dimethylethanolamine to choline-containing compounds by neurons in culture and by the rat brain.
    Andriamampandry C; Freysz L; Kanfer JN; Dreyfus H; Massarelli R
    Biochem J; 1989 Dec; 264(2):555-62. PubMed ID: 2604731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The reaggregation of rat brain microsomal membranes after the treatment with octyl-beta-D-glucopyranoside. A study on ethanolamine base-exchange.
    Corazzi L; Arienti G
    Biochim Biophys Acta; 1986 Feb; 875(2):362-8. PubMed ID: 3942772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rat lens choline and ethanolamine kinases: independent kinetics in intact tissue-competition in homogenates.
    Ekambaram MC; Jernigan HM
    Biochim Biophys Acta; 1994 Aug; 1213(3):289-94. PubMed ID: 8049241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contribution of substrates for phospholipid N methylation by the base exchange enzyme in rat brain microsomes.
    Kanfer JN
    Biochem Biophys Res Commun; 1982 May; 106(2):422-8. PubMed ID: 7104003
    [No Abstract]   [Full Text] [Related]  

  • 26. In vitro and in vivo ethanolamine metabolism in rat brain: effect of time and aging.
    Andriamampandry C; Kanfer JN; Freysz L; Dreyfus H; Massarelli R
    Neurobiol Aging; 1992; 13(3):435-40. PubMed ID: 1625773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective enhancement of wnt4 expression by cyclic AMP-associated cooperation between rat central astrocytes and microglia.
    Ohnishi M; Urasaki T; Ochiai H; Matsuoka K; Takeo S; Harada T; Ohsugi Y; Inoue A
    Biochem Biophys Res Commun; 2015 Nov; 467(2):367-72. PubMed ID: 26431871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Base-exchange reactions of the phospholipids in cardiac membranes.
    Filler DA; Weinhold PA
    Biochim Biophys Acta; 1980 May; 618(2):223-30. PubMed ID: 6769494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolism of 7 beta-hydroxycholesterol in astrocyte primary cultures and derived spontaneously transformed cell lines: correlation between the esterification on C-3 -OH by naturally occurring fatty acids and cytotoxicity.
    Kupferberg A; Behr P; Mersel M
    Biochim Biophys Acta; 1990 Aug; 1046(1):106-9. PubMed ID: 2397239
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phospholipid fatty acyl group composition in mitochondria, microsomes and plasma membranes isolated from rat astrocyte primary cultures: developmental studies.
    el-Achkar P; Van Dorsselaer A; Freysz L; Mandel P; Mersel M
    Dev Neurosci; 1987; 9(4):247-54. PubMed ID: 3428192
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Base-exchange and cell growth in 3T6 mouse fibroblasts.
    Richardson UI; Wurtman RJ
    Biochim Biophys Acta; 1992 Jul; 1127(1):99-102. PubMed ID: 1627640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Possible function of astrocyte cytochrome P450 in control of xenobiotic phenytoin in the brain: in vitro studies on murine astrocyte primary cultures.
    Meyer RP; Knoth R; Schiltz E; Volk B
    Exp Neurol; 2001 Feb; 167(2):376-84. PubMed ID: 11161626
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of trypsinization on the plasma membrane binding and action of 3,5,3'-triiodothyronine in rat thymocytes.
    Segal J; Ingbar SH
    Endocrinology; 1986 May; 118(5):1863-8. PubMed ID: 3009138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Factors affecting the reaggregation of rat brain microsomes solubilized with octyl glucoside and their relationship with the base-exchange activity of reaggregates.
    Corazzi L; Arienti G
    Biochim Biophys Acta; 1987 Oct; 903(2):277-82. PubMed ID: 3651463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 5'-deiodinase activity in cultured glial and fibroblastic cells from the cerebella of newborn rats.
    Pruvost V; Valentin S; Cheynel I; Vigouroux E; Bézine MF
    Horm Metab Res; 1999 Nov; 31(11):591-6. PubMed ID: 10598825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein synthesis in astrocytes: 'spontaneous' and cyclic AMP-induced differentiation.
    Bridoux AM; Fages C; Couchie D; Nunez J; Tardy M
    Dev Neurosci; 1986; 8(1):31-43. PubMed ID: 3017675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Age dependent variations in choline and ethanolamine phosphorylating activities of rodents.
    Upreti RK
    Biochem Exp Biol; 1980; 16(3):221-6. PubMed ID: 6268127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased activity of a phospholipid base-exchange system by the differentiation of neoplastic cells from the nervous system.
    Erkell LJ; De Medio GE; Haglid K; Porcellati G
    J Neurosci Res; 1980; 5(2):137-41. PubMed ID: 6772796
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Astrocyte cultures from conditional connexin43-deficient mice.
    Theis M; Speidel D; Willecke K
    Glia; 2004 Apr; 46(2):130-41. PubMed ID: 15042581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Membrane lipid biosynthesis in Chlamydomonas reinhardtii: ethanolaminephosphotransferase is capable of synthesizing both phosphatidylcholine and phosphatidylethanolamine.
    Yang W; Moroney JV; Moore TS
    Arch Biochem Biophys; 2004 Oct; 430(2):198-209. PubMed ID: 15369819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.