These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
471 related articles for article (PubMed ID: 25391449)
1. Palladium nanoparticles decorated on reduced graphene oxide rotating disk electrodes toward ultrasensitive hydrazine detection: effects of particle size and hydrodynamic diffusion. Krittayavathananon A; Srimuk P; Luanwuthi S; Sawangphruk M Anal Chem; 2014 Dec; 86(24):12272-8. PubMed ID: 25391449 [TBL] [Abstract][Full Text] [Related]
2. In situ synthesis of palladium nanoparticle-graphene nanohybrids and their application in nonenzymatic glucose biosensors. Lu LM; Li HB; Qu F; Zhang XB; Shen GL; Yu RQ Biosens Bioelectron; 2011 Apr; 26(8):3500-4. PubMed ID: 21342759 [TBL] [Abstract][Full Text] [Related]
3. One-pot ionic liquid-assisted synthesis of highly dispersed PtPd nanoparticles/reduced graphene oxide composites for nonenzymatic glucose detection. Li M; Bo X; Zhang Y; Han C; Guo L Biosens Bioelectron; 2014 Jun; 56():223-30. PubMed ID: 24508545 [TBL] [Abstract][Full Text] [Related]
4. Amperometric determination of L-cysteine using a glassy carbon electrode modified with palladium nanoparticles grown on reduced graphene oxide in a Nafion matrix. Yusoff N; Rameshkumar P; Mohamed Noor A; Huang NM Mikrochim Acta; 2018 Apr; 185(4):246. PubMed ID: 29616348 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd-Pt nanoparticles. Yan J; Liu S; Zhang Z; He G; Zhou P; Liang H; Tian L; Zhou X; Jiang H Colloids Surf B Biointerfaces; 2013 Nov; 111():392-7. PubMed ID: 23850748 [TBL] [Abstract][Full Text] [Related]
6. Amperometric sensing of hydrazine in environmental and biological samples by using CeO Huang H; Li T; Sun Y; Yu L; Wang C; Shen R; Ye W; Wang D; Li Y Mikrochim Acta; 2019 Jan; 186(1):46. PubMed ID: 30610467 [TBL] [Abstract][Full Text] [Related]
7. An electrochemical ascorbic acid sensor based on palladium nanoparticles supported on graphene oxide. Wu GH; Wu YF; Liu XW; Rong MC; Chen XM; Chen X Anal Chim Acta; 2012 Oct; 745():33-7. PubMed ID: 22938603 [TBL] [Abstract][Full Text] [Related]
8. Palladium nanoparticle/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor. Zeng Q; Cheng JS; Liu XF; Bai HT; Jiang JH Biosens Bioelectron; 2011 Apr; 26(8):3456-63. PubMed ID: 21324668 [TBL] [Abstract][Full Text] [Related]
9. Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing. Maji SK; Sreejith S; Mandal AK; Ma X; Zhao Y ACS Appl Mater Interfaces; 2014 Aug; 6(16):13648-56. PubMed ID: 25046127 [TBL] [Abstract][Full Text] [Related]
10. Electrocatalytic oxidation of hydrazine and hydroxylamine by graphene oxide-Pd nanoparticle-modified glassy carbon electrode. Lee E; Kim D; You JM; Kim SK; Yun M; Jeon S J Nanosci Nanotechnol; 2012 Dec; 12(12):8886-92. PubMed ID: 23447933 [TBL] [Abstract][Full Text] [Related]
11. Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine. Maleki N; Safavi A; Farjami E; Tajabadi F Anal Chim Acta; 2008 Mar; 611(2):151-5. PubMed ID: 18328315 [TBL] [Abstract][Full Text] [Related]
12. Preparation and characterization of AuNPs/CNTs-ErGO electrochemical sensors for highly sensitive detection of hydrazine. Zhao Z; Sun Y; Li P; Zhang W; Lian K; Hu J; Chen Y Talanta; 2016 Sep; 158():283-291. PubMed ID: 27343607 [TBL] [Abstract][Full Text] [Related]
13. Amplified cathodic electrochemiluminescence of luminol based on Pd and Pt nanoparticles and glucose oxidase decorated graphene as trace label for ultrasensitive detection of protein. Cao Y; Yuan R; Chai Y; Liu H; Liao Y; Zhuo Y Talanta; 2013 Sep; 113():106-12. PubMed ID: 23708630 [TBL] [Abstract][Full Text] [Related]
14. A facile fabrication of copper particle-decorated novel graphene flower composites for enhanced detecting of nitrite. Wang H; Wang C; Yang B; Zhai C; Bin D; Zhang K; Yang P; Du Y Analyst; 2015 Feb; 140(4):1291-7. PubMed ID: 25568897 [TBL] [Abstract][Full Text] [Related]
15. Enhanced peroxydisulfate electrochemiluminescence for dopamine biosensing based on Au nanoparticle decorated reduced graphene oxide. Yan Y; Liu Q; Wang K; Jiang L; Yang X; Qian J; Dong X; Qiu B Analyst; 2013 Dec; 138(23):7101-6. PubMed ID: 24108062 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical sensor for sensitive detection of triclosan based on graphene/palladium nanoparticles hybrids. Wu T; Li T; Liu Z; Guo Y; Dong C Talanta; 2017 Mar; 164():556-562. PubMed ID: 28107972 [TBL] [Abstract][Full Text] [Related]
17. Aniline as a dispersing and stabilizing agent for reduced graphene oxide and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Liu S; Wang L; Tian J; Luo Y; Zhang X; Sun X J Colloid Interface Sci; 2011 Nov; 363(2):615-9. PubMed ID: 21855890 [TBL] [Abstract][Full Text] [Related]
18. Enhanced conductivity of rGO/Ag NPs composites for electrochemical immunoassay of prostate-specific antigen. Han L; Liu CM; Dong SL; Du CX; Zhang XY; Li LH; Wei Y Biosens Bioelectron; 2017 Jan; 87():466-472. PubMed ID: 27591721 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode. Kaur B; Pandiyan T; Satpati B; Srivastava R Colloids Surf B Biointerfaces; 2013 Nov; 111():97-106. PubMed ID: 23777794 [TBL] [Abstract][Full Text] [Related]
20. Nanomolar electrochemical detection of caffeic acid in fortified wine samples based on gold/palladium nanoparticles decorated graphene flakes. Thangavelu K; Raja N; Chen SM; Liao WC J Colloid Interface Sci; 2017 Sep; 501():77-85. PubMed ID: 28437700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]