These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 25392316)

  • 1. Inbreeding-related trade-offs in stress resistance in the ant Formica exsecta.
    Freitak D; Bos N; Stucki D; Sundström L
    Biol Lett; 2014 Nov; 10(11):20140805. PubMed ID: 25392316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Starvation resistance and tissue-specific gene expression of stress-related genes in a naturally inbred ant population.
    Bos N; Pulliainen U; Sundström L; Freitak D
    R Soc Open Sci; 2016 Apr; 3(4):160062. PubMed ID: 27152219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inbreeding and reproductive investment in the ant Formica exsecta.
    Vitikainen E; Haag-Liautard C; Sundström L
    Evolution; 2011 Jul; 65(7):2026-37. PubMed ID: 21729057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The first draft genomes of the ant Formica exsecta, and its Wolbachia endosymbiont reveal extensive gene transfer from endosymbiont to host.
    Dhaygude K; Nair A; Johansson H; Wurm Y; Sundström L
    BMC Genomics; 2019 Apr; 20(1):301. PubMed ID: 30991952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress responses upon starvation and exposure to bacteria in the ant
    Stucki D; Freitak D; Bos N; Sundström L
    PeerJ; 2019; 7():e6428. PubMed ID: 30805249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natal Dispersal, Mating Patterns, and Inbreeding in the Ant Formica exsecta.
    Vitikainen EI; Haag-Liautard C; Sundström L
    Am Nat; 2015 Dec; 186(6):716-27. PubMed ID: 26655979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inbreeding and sex-biased gene flow in the ant Formica exsecta.
    Sundström L; Keller L; Chapuisat M
    Evolution; 2003 Jul; 57(7):1552-61. PubMed ID: 12940360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome characterisation of the ant Formica exsecta with new insights into the evolution of desaturase genes in social hymenoptera.
    Badouin H; Belkhir K; Gregson E; Galindo J; Sundström L; Martin SJ; Butlin RK; Smadja CM
    PLoS One; 2013; 8(7):e68200. PubMed ID: 23874539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caste-biases in gene expression are specific to developmental stage in the ant Formica exsecta.
    Morandin C; Dhaygude K; Paviala J; Trontti K; Wheat C; Helanterä H
    J Evol Biol; 2015 Sep; 28(9):1705-18. PubMed ID: 26172873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High levels of multiple Wolbachia infection and recombination in the ant Formica exsecta.
    Reuter M; Keller L
    Mol Biol Evol; 2003 May; 20(5):748-53. PubMed ID: 12679529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A metatranscriptomic approach to the identification of microbiota associated with the ant Formica exsecta.
    Johansson H; Dhaygude K; Lindström S; Helanterä H; Sundström L; Trontti K
    PLoS One; 2013; 8(11):e79777. PubMed ID: 24260298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of inbreeding and temperature stress on life history and immune function in a butterfly.
    Franke K; Fischer K
    J Evol Biol; 2013 Mar; 26(3):517-28. PubMed ID: 23286274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential gene expression in Acromyrmex leaf-cutting ants after challenges with two fungal pathogens.
    Yek SH; Boomsma JJ; Schiøtt M
    Mol Ecol; 2013 Apr; 22(8):2173-87. PubMed ID: 23480581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome organization and molecular characterization of the three
    Dhaygude K; Johansson H; Kulmuni J; Sundström L
    PeerJ; 2019; 6():e6216. PubMed ID: 30809424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic analysis of inbreeding depression in cold-sensitive Drosophila melanogaster shows upregulation of the immune response.
    Vermeulen CJ; Sørensen P; Kirilova Gagalova K; Loeschcke V
    J Evol Biol; 2013 Sep; 26(9):1890-902. PubMed ID: 23944235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Not only for egg yolk--functional and evolutionary insights from expression, selection, and structural analyses of Formica ant vitellogenins.
    Morandin C; Havukainen H; Kulmuni J; Dhaygude K; Trontti K; Helanterä H
    Mol Biol Evol; 2014 Aug; 31(8):2181-93. PubMed ID: 24895411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomics analysis of five families of antimicrobial peptide-like genes in seven ant species.
    Zhang Z; Zhu S
    Dev Comp Immunol; 2012 Oct; 38(2):262-74. PubMed ID: 22617650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different bacterial and viral pathogens trigger distinct immune responses in a globally invasive ant.
    Lester PJ; Buick KH; Baty JW; Felden A; Haywood J
    Sci Rep; 2019 Apr; 9(1):5780. PubMed ID: 30962470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergent genetic architecture underlies social organization in ants.
    Purcell J; Brelsford A; Wurm Y; Perrin N; Chapuisat M
    Curr Biol; 2014 Nov; 24(22):2728-32. PubMed ID: 25455032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. No inbreeding depression but increased sexual investment in highly inbred ant colonies.
    Kureck IM; Jongepier E; Nicolai B; Foitzik S
    Mol Ecol; 2012 Nov; 21(22):5613-23. PubMed ID: 23043297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.