These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 25392716)

  • 1. Ranking-Based Convolutional Neural Network Models for Peptide-MHC Class I Binding Prediction.
    Chen Z; Min MR; Ning X
    Front Mol Biosci; 2021; 8():634836. PubMed ID: 34079815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ConvNeXt-MHC: improving MHC-peptide affinity prediction by structure-derived degenerate coding and the ConvNeXt model.
    Zhang L; Song W; Zhu T; Liu Y; Chen W; Cao Y
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38561979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated database of experimentally validated major histocompatibility complex epitopes for antigen-specific cancer therapy.
    Kawakita S; Shen A; Chao CC; Wang Z; Cheng S; Li B; Jiang C
    Antib Ther; 2024 Apr; 7(2):177-186. PubMed ID: 38933532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep neural networks predict class I major histocompatibility complex epitope presentation and transfer learn neoepitope immunogenicity.
    Albert BA; Yang Y; Shao XM; Singh D; Smit KN; Anagnostou V; Karchin R
    Nat Mach Intell; 2023 Aug; 5(8):861-872. PubMed ID: 37829001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RLpMIEC: High-Affinity Peptide Generation Targeting Major Histocompatibility Complex-I Guided and Interpreted by Interaction Spectrum-Navigated Reinforcement Learning.
    Deng Q; Wang Z; Xiang S; Wang Q; Liu Y; Hou T; Sun H
    J Chem Inf Model; 2024 Aug; 64(16):6432-6449. PubMed ID: 39118363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GraphMHC: Neoantigen prediction model applying the graph neural network to molecular structure.
    Jeong H; Cho YR; Gim J; Cha SK; Kim M; Kang DR
    PLoS One; 2024; 19(3):e0291223. PubMed ID: 38536842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TransMHCII: a novel MHC-II binding prediction model built using a protein language model and an image classifier.
    Yu X; Negron C; Huang L; Veldman G
    Antib Ther; 2023 Apr; 6(2):137-146. PubMed ID: 37342671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State of the art and challenges in sequence based T-cell epitope prediction.
    Lundegaard C; Hoof I; Lund O; Nielsen M
    Immunome Res; 2010 Nov; 6 Suppl 2(Suppl 2):S3. PubMed ID: 21067545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A large-scale study of peptide features defining immunogenicity of cancer neo-epitopes.
    Wan YR; Koşaloğlu-Yalçın Z; Peters B; Nielsen M
    NAR Cancer; 2024 Mar; 6(1):zcae002. PubMed ID: 38288446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Building MHC class II epitope predictor using machine learning approaches.
    Eng LP; Tan TW; Tong JC
    Methods Mol Biol; 2015; 1268():67-73. PubMed ID: 25555721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma-derived extracellular vesicle proteins as a source of biomarkers for lung adenocarcinoma.
    Vykoukal J; Sun N; Aguilar-Bonavides C; Katayama H; Tanaka I; Fahrmann JF; Capello M; Fujimoto J; Aguilar M; Wistuba II; Taguchi A; Ostrin EJ; Hanash SM
    Oncotarget; 2017 Nov; 8(56):95466-95480. PubMed ID: 29221141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of CPS1 in Cell Growth, Metabolism and Prognosis in LKB1-Inactivated Lung Adenocarcinoma.
    Çeliktas M; Tanaka I; Tripathi SC; Fahrmann JF; Aguilar-Bonavides C; Villalobos P; Delgado O; Dhillon D; Dennison JB; Ostrin EJ; Wang H; Behrens C; Do KA; Gazdar AF; Hanash SM; Taguchi A
    J Natl Cancer Inst; 2017 Mar; 109(3):1-9. PubMed ID: 28376202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing a conjugate vaccine targeting
    Li M; Yu M; Yuan Y; Li D; Ye D; Zhao M; Lin Z; Shi L
    Heliyon; 2024 Mar; 10(5):e27417. PubMed ID: 38486755
    [No Abstract]   [Full Text] [Related]  

  • 14. Accurate prediction of major histocompatibility complex class II epitopes by sparse representation via ℓ 1-minimization.
    Aguilar-Bonavides C; Sanchez-Arias R; Lanzas C
    BioData Min; 2014; 7():23. PubMed ID: 25392716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab-initio conformational epitope structure prediction using genetic algorithm and SVM for vaccine design.
    Moghram BA; Nabil E; Badr A
    Comput Methods Programs Biomed; 2018 Jan; 153():161-170. PubMed ID: 29157448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of a Predictive Cleavage Motif for Eluted Major Histocompatibility Complex Class II Ligands.
    Paul S; Karosiene E; Dhanda SK; Jurtz V; Edwards L; Nielsen M; Sette A; Peters B
    Front Immunol; 2018; 9():1795. PubMed ID: 30127785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
    Zhao W; Sher X
    PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing bovine T cell vaccines via reverse immunology.
    Nene V; Svitek N; Toye P; Golde WT; Barlow J; Harndahl M; Buus S; Nielsen M
    Ticks Tick Borne Dis; 2012 Jun; 3(3):188-92. PubMed ID: 22621863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial antigen delivery systems: phagocytic processing of bacterial antigens for MHC-I and MHC-II presentation to T cells.
    Svensson M; Pfeifer J; Stockinger B; Wick MJ
    Behring Inst Mitt; 1997 Feb; (98):197-211. PubMed ID: 9382741
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.