These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 25392716)
41. Predicting peptides bound to I-Ag7 class II histocompatibility molecules using a novel expectation-maximization alignment algorithm. Chang KY; Suri A; Unanue ER Proteomics; 2007 Feb; 7(3):367-77. PubMed ID: 17211830 [TBL] [Abstract][Full Text] [Related]
42. Prediction of MHC class I binding peptides with a new feature encoding technique. Gök M; Özcerit AT Cell Immunol; 2012; 275(1-2):1-4. PubMed ID: 22531484 [TBL] [Abstract][Full Text] [Related]
43. A novel Locally Linear Embedding and Wavelet Transform based encoding method for prediction of MHC-II binding affinity. Liu J; Li QJ; Zhang W Interdiscip Sci; 2010 Jun; 2(2):145-50. PubMed ID: 20640782 [TBL] [Abstract][Full Text] [Related]
44. Selection of T-cell epitopes from foot-and-mouth disease virus reflects the binding affinity to different cattle MHC class II molecules. Haghparast A; Wauben MH; Grosfeld-Stulemeyer MC; van Kooten P; Hensen EJ Immunogenetics; 2000 Jul; 51(8-9):733-42. PubMed ID: 10941845 [TBL] [Abstract][Full Text] [Related]
45. Structure-based prediction of MHC-peptide association: algorithm comparison and application to cancer vaccine design. Schiewe AJ; Haworth IS J Mol Graph Model; 2007 Oct; 26(3):667-75. PubMed ID: 17493854 [TBL] [Abstract][Full Text] [Related]
46. A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes. Bhasin M; Raghava GP J Biosci; 2007 Jan; 32(1):31-42. PubMed ID: 17426378 [TBL] [Abstract][Full Text] [Related]
47. A pattern search method for putative anchor residues in T cell epitopes. Hobohm U; Meyerhans A Eur J Immunol; 1993 Jun; 23(6):1271-6. PubMed ID: 7684684 [TBL] [Abstract][Full Text] [Related]
48. Support vector machine-based prediction of MHC-binding peptides. Dönnes P Methods Mol Biol; 2007; 409():273-82. PubMed ID: 18450007 [TBL] [Abstract][Full Text] [Related]
49. Improved peptide-MHC class II interaction prediction through integration of eluted ligand and peptide affinity data. Garde C; Ramarathinam SH; Jappe EC; Nielsen M; Kringelum JV; Trolle T; Purcell AW Immunogenetics; 2019 Jul; 71(7):445-454. PubMed ID: 31183519 [TBL] [Abstract][Full Text] [Related]
50. Peptide specificity of alloreactive CD4 positive T lymphocytes directed against a major histocompatibility complex class I disparity. Ossevoort MA; De Bruijn ML; Van Veen KJ; Kast WM; Melief CJ Transplantation; 1996 Nov; 62(10):1485-91. PubMed ID: 8958276 [TBL] [Abstract][Full Text] [Related]
51. Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties. Cui J; Han LY; Lin HH; Zhang HL; Tang ZQ; Zheng CJ; Cao ZW; Chen YZ Mol Immunol; 2007 Feb; 44(5):866-77. PubMed ID: 16806474 [TBL] [Abstract][Full Text] [Related]
52. Two novel T cell epitope prediction algorithms based on MHC-binding motifs; comparison of predicted and published epitopes from Mycobacterium tuberculosis and HIV protein sequences. Meister GE; Roberts CG; Berzofsky JA; De Groot AS Vaccine; 1995 Apr; 13(6):581-91. PubMed ID: 7483779 [TBL] [Abstract][Full Text] [Related]
53. Automated benchmarking of peptide-MHC class I binding predictions. Trolle T; Metushi IG; Greenbaum JA; Kim Y; Sidney J; Lund O; Sette A; Peters B; Nielsen M Bioinformatics; 2015 Jul; 31(13):2174-81. PubMed ID: 25717196 [TBL] [Abstract][Full Text] [Related]
54. An effective and effecient peptide binding prediction approach for a broad set of HLA-DR molecules based on ordered weighted averaging of binding pocket profiles. Shen WJ; Zhang S; Wong HS Proteome Sci; 2013 Nov; 11(Suppl 1):S15. PubMed ID: 24565049 [TBL] [Abstract][Full Text] [Related]
55. Predicting MHC class I epitopes in large datasets. Roomp K; Antes I; Lengauer T BMC Bioinformatics; 2010 Feb; 11():90. PubMed ID: 20163709 [TBL] [Abstract][Full Text] [Related]
56. Improved pan-specific prediction of MHC class I peptide binding using a novel receptor clustering data partitioning strategy. Mattsson AH; Kringelum JV; Garde C; Nielsen M HLA; 2016 Dec; 88(6):287-292. PubMed ID: 27762504 [TBL] [Abstract][Full Text] [Related]
57. T cell responses to bluetongue virus are directed against multiple and identical CD4+ and CD8+ T cell epitopes from the VP7 core protein in mouse and sheep. Rojas JM; Rodríguez-Calvo T; Peña L; Sevilla N Vaccine; 2011 Sep; 29(40):6848-57. PubMed ID: 21807057 [TBL] [Abstract][Full Text] [Related]
58. Logic minimization and rule extraction for identification of functional sites in molecular sequences. Cruz-Cano R; Lee ML; Leung MY BioData Min; 2012 Aug; 5(1):10. PubMed ID: 22897894 [TBL] [Abstract][Full Text] [Related]
59. Sequence conservation analysis and in silico human leukocyte antigen-peptide binding predictions for the Mtb72F and M72 tuberculosis candidate vaccine antigens. Mortier MC; Jongert E; Mettens P; Ruelle JL BMC Immunol; 2015 Oct; 16():63. PubMed ID: 26493839 [TBL] [Abstract][Full Text] [Related]
60. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Andreatta M; Nielsen M Bioinformatics; 2016 Feb; 32(4):511-7. PubMed ID: 26515819 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]