These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 25392880)

  • 1. Transcription factors without footprints.
    Rusk N
    Nat Methods; 2014 Oct; 11(10):988-9. PubMed ID: 25392880
    [No Abstract]   [Full Text] [Related]  

  • 2. Reproducible inference of transcription factor footprints in ATAC-seq and DNase-seq datasets using protocol-specific bias modeling.
    Karabacak Calviello A; Hirsekorn A; Wurmus R; Yusuf D; Ohler U
    Genome Biol; 2019 Feb; 20(1):42. PubMed ID: 30791920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Footprints by deep sequencing.
    Hager G
    Nat Methods; 2009 Apr; 6(4):254-5. PubMed ID: 19333240
    [No Abstract]   [Full Text] [Related]  

  • 4. Improved methylation protection-based DNA footprinting to reveal structural distortion of DNA upon transcription factor binding.
    Reid KJ; Nelson CC
    Biotechniques; 2001 Jan; 30(1):20-2. PubMed ID: 11196311
    [No Abstract]   [Full Text] [Related]  

  • 5. Footprinting and missing nucleoside analysis of transcription factor-DNA complexes.
    Viola IL; Gonzalez DH
    Methods Mol Biol; 2011; 754():259-75. PubMed ID: 21720958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of computational footprinting methods for DNase sequencing experiments.
    Gusmao EG; Allhoff M; Zenke M; Costa IG
    Nat Methods; 2016 Apr; 13(4):303-9. PubMed ID: 26901649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of transcription factor binding sites using ATAC-seq.
    Li Z; Schulz MH; Look T; Begemann M; Zenke M; Costa IG
    Genome Biol; 2019 Feb; 20(1):45. PubMed ID: 30808370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Footprint phenotypes: structural models of DNA-binding proteins from chemical modification analysis of DNA.
    Yang J; Carey J
    Methods Enzymol; 1995; 259():452-68. PubMed ID: 8538467
    [No Abstract]   [Full Text] [Related]  

  • 9. Mutex: a method for simultaneous footprinting and determination of base pair specificity for transcription factor binding sites.
    Denkinger DJ; Kawahara RS
    Anal Biochem; 2003 Oct; 321(1):142-5. PubMed ID: 12963067
    [No Abstract]   [Full Text] [Related]  

  • 10. DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter.
    Quach B; Furey TS
    Bioinformatics; 2017 Apr; 33(7):956-963. PubMed ID: 27993786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Footprinting with an automated capillary DNA sequencer.
    Yindeeyoungyeon W; Schell MA
    Biotechniques; 2000 Nov; 29(5):1034-6, 1038, 1040-1. PubMed ID: 11084866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein-DNA interactions in vivo.
    Kang SH; Vieira K; Bungert J
    Nucleic Acids Res; 2002 May; 30(10):e44. PubMed ID: 12000849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative hydroxyl radical footprinting reveals cooperative interactions between DNA-binding subdomains of PU.1 and IRF4.
    Gross P; Yee AA; Arrowsmith CH; Macgregor RB
    Biochemistry; 1998 Jul; 37(27):9802-11. PubMed ID: 9657694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ footprinting of chicken histone H5 gene in mature and immature erythrocytes reveals common factor-binding sites.
    Sun JM; Ferraiuolo R; Davie JR
    Chromosoma; 1996 Apr; 104(7):504-10. PubMed ID: 8625738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of tetramer formation by the nitrogen assimilation control protein for strong repression of glutamate dehydrogenase formation in Klebsiella pneumoniae.
    Rosario CJ; Bender RA
    J Bacteriol; 2005 Dec; 187(24):8291-9. PubMed ID: 16321933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence selective binding of bis-daunorubicin WP631 to DNA.
    Fox KR; Webster R; Phelps RJ; Fokt I; Priebe W
    Eur J Biochem; 2004 Sep; 271(17):3556-66. PubMed ID: 15317591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NF-1C, Sp1, and Sp3 are essential for transcription of the human gene for P450c17 (steroid 17alpha-hydroxylase/17,20 lyase) in human adrenal NCI-H295A cells.
    Lin CJ; Martens JW; Miller WL
    Mol Endocrinol; 2001 Aug; 15(8):1277-93. PubMed ID: 11463853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of a transcription-factor-binding site by nuclease protection footprinting onto southwestern blots.
    Papavassiliou AG
    Methods Mol Biol; 2001; 148():135-49. PubMed ID: 11357582
    [No Abstract]   [Full Text] [Related]  

  • 20. Hydroxyl radical footprinting of DNA complexes of the ets domain of PU.1 and its comparison to the crystal structure.
    Gross P; Arrowsmith CH; Macgregor RB
    Biochemistry; 1998 Apr; 37(15):5129-35. PubMed ID: 9548743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.