These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 25393116)
21. Cfs1p, a Novel Membrane Protein in the PQ-Loop Family, Is Involved in Phospholipid Flippase Functions in Yeast. Yamamoto T; Fujimura-Kamada K; Shioji E; Suzuki R; Tanaka K G3 (Bethesda); 2017 Jan; 7(1):179-192. PubMed ID: 28057802 [TBL] [Abstract][Full Text] [Related]
22. Control of protein and sterol trafficking by antagonistic activities of a type IV P-type ATPase and oxysterol binding protein homologue. Muthusamy BP; Raychaudhuri S; Natarajan P; Abe F; Liu K; Prinz WA; Graham TR Mol Biol Cell; 2009 Jun; 20(12):2920-31. PubMed ID: 19403696 [TBL] [Abstract][Full Text] [Related]
23. Mechanism of action of the flippase Drs2p in modulating GTP hydrolysis of Arl1p. Hsu JW; Chen ZJ; Liu YW; Lee FJ J Cell Sci; 2014 Jun; 127(Pt 12):2615-20. PubMed ID: 24706946 [TBL] [Abstract][Full Text] [Related]
24. The Arf activator Gea2p and the P-type ATPase Drs2p interact at the Golgi in Saccharomyces cerevisiae. Chantalat S; Park SK; Hua Z; Liu K; Gobin R; Peyroche A; Rambourg A; Graham TR; Jackson CL J Cell Sci; 2004 Feb; 117(Pt 5):711-22. PubMed ID: 14734650 [TBL] [Abstract][Full Text] [Related]
25. Arl1p regulates spatial membrane organization at the trans-Golgi network through interaction with Arf-GEF Gea2p and flippase Drs2p. Tsai PC; Hsu JW; Liu YW; Chen KY; Lee FJ Proc Natl Acad Sci U S A; 2013 Feb; 110(8):E668-77. PubMed ID: 23345439 [TBL] [Abstract][Full Text] [Related]
26. Loss of P4 ATPases Drs2p and Dnf3p disrupts aminophospholipid transport and asymmetry in yeast post-Golgi secretory vesicles. Alder-Baerens N; Lisman Q; Luong L; Pomorski T; Holthuis JC Mol Biol Cell; 2006 Apr; 17(4):1632-42. PubMed ID: 16452632 [TBL] [Abstract][Full Text] [Related]
27. Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Pomorski T; Lombardi R; Riezman H; Devaux PF; van Meer G; Holthuis JC Mol Biol Cell; 2003 Mar; 14(3):1240-54. PubMed ID: 12631737 [TBL] [Abstract][Full Text] [Related]
28. Direct evidence of lipid transport by the Drs2-Cdc50 flippase upon truncation of its terminal regions. Herrera SA; Justesen BH; Dieudonné T; Montigny C; Nissen P; Lenoir G; Günther Pomorski T Protein Sci; 2023 Dec; 33(3):e4855. PubMed ID: 38063271 [TBL] [Abstract][Full Text] [Related]
29. Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae. Huang Y; Takar M; Best JT; Graham TR Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Feb; 1865(2):158581. PubMed ID: 31786280 [TBL] [Abstract][Full Text] [Related]
30. Defects in structural integrity of ergosterol and the Cdc50p-Drs2p putative phospholipid translocase cause accumulation of endocytic membranes, onto which actin patches are assembled in yeast. Kishimoto T; Yamamoto T; Tanaka K Mol Biol Cell; 2005 Dec; 16(12):5592-609. PubMed ID: 16195350 [TBL] [Abstract][Full Text] [Related]
31. Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo. Gall WE; Geething NC; Hua Z; Ingram MF; Liu K; Chen SI; Graham TR Curr Biol; 2002 Sep; 12(18):1623-7. PubMed ID: 12372257 [TBL] [Abstract][Full Text] [Related]
32. A complex genetic interaction implicates that phospholipid asymmetry and phosphate homeostasis regulate Golgi functions. Miyasaka M; Mioka T; Kishimoto T; Itoh E; Tanaka K PLoS One; 2020; 15(7):e0236520. PubMed ID: 32730286 [TBL] [Abstract][Full Text] [Related]
33. Type IV P-type ATPases distinguish mono- versus diacyl phosphatidylserine using a cytofacial exit gate in the membrane domain. Baldridge RD; Xu P; Graham TR J Biol Chem; 2013 Jul; 288(27):19516-27. PubMed ID: 23709217 [TBL] [Abstract][Full Text] [Related]
34. The PQ-loop protein Any1 segregates Drs2 and Neo1 functions required for viability and plasma membrane phospholipid asymmetry. Takar M; Huang Y; Graham TR J Lipid Res; 2019 May; 60(5):1032-1042. PubMed ID: 30824614 [TBL] [Abstract][Full Text] [Related]
35. Linking phospholipid flippases to vesicle-mediated protein transport. Muthusamy BP; Natarajan P; Zhou X; Graham TR Biochim Biophys Acta; 2009 Jul; 1791(7):612-9. PubMed ID: 19286470 [TBL] [Abstract][Full Text] [Related]
36. Mutational analysis of the Lem3p-Dnf1p putative phospholipid-translocating P-type ATPase reveals novel regulatory roles for Lem3p and a carboxyl-terminal region of Dnf1p independent of the phospholipid-translocating activity of Dnf1p in yeast. Noji T; Yamamoto T; Saito K; Fujimura-Kamada K; Kondo S; Tanaka K Biochem Biophys Res Commun; 2006 May; 344(1):323-31. PubMed ID: 16600184 [TBL] [Abstract][Full Text] [Related]
37. Loss of Drs2p does not abolish transfer of fluorescence-labeled phospholipids across the plasma membrane of Saccharomyces cerevisiae. Siegmund A; Grant A; Angeletti C; Malone L; Nichols JW; Rudolph HK J Biol Chem; 1998 Dec; 273(51):34399-405. PubMed ID: 9852106 [TBL] [Abstract][Full Text] [Related]
38. Phosphatidylserine translocation at the yeast trans-Golgi network regulates protein sorting into exocytic vesicles. Hankins HM; Sere YY; Diab NS; Menon AK; Graham TR Mol Biol Cell; 2015 Dec; 26(25):4674-85. PubMed ID: 26466678 [TBL] [Abstract][Full Text] [Related]
39. ATP9B, a P4-ATPase (a putative aminophospholipid translocase), localizes to the trans-Golgi network in a CDC50 protein-independent manner. Takatsu H; Baba K; Shima T; Umino H; Kato U; Umeda M; Nakayama K; Shin HW J Biol Chem; 2011 Nov; 286(44):38159-38167. PubMed ID: 21914794 [TBL] [Abstract][Full Text] [Related]
40. INTRACELLULAR TRANSPORT. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Moser von Filseck J; Čopič A; Delfosse V; Vanni S; Jackson CL; Bourguet W; Drin G Science; 2015 Jul; 349(6246):432-6. PubMed ID: 26206936 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]