These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 25393528)

  • 1. Effect of latent heat in boiling water on the synthesis of gold nanoparticles of different sizes by using the Turkevich method.
    Ding W; Zhang P; Li Y; Xia H; Wang D; Tao X
    Chemphyschem; 2015 Feb; 16(2):447-54. PubMed ID: 25393528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of monodisperse quasi-spherical gold nanoparticles in water via silver(I)-assisted citrate reduction.
    Xia H; Bai S; Hartmann J; Wang D
    Langmuir; 2010 Mar; 26(5):3585-9. PubMed ID: 19877698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Little adjustments significantly improve the Turkevich synthesis of gold nanoparticles.
    Schulz F; Homolka T; Bastús NG; Puntes V; Weller H; Vossmeyer T
    Langmuir; 2014 Sep; 30(35):10779-84. PubMed ID: 25127436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Precision Gold Nanoparticles Using Turkevich Method.
    Dong J; Carpinone PL; Pyrgiotakis G; Demokritou P; Moudgil BM
    Kona; 2020 Jan; 37():224-232. PubMed ID: 32153313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turkevich in New Robes: Key Questions Answered for the Most Common Gold Nanoparticle Synthesis.
    Wuithschick M; Birnbaum A; Witte S; Sztucki M; Vainio U; Pinna N; Rademann K; Emmerling F; Kraehnert R; Polte J
    ACS Nano; 2015 Jul; 9(7):7052-71. PubMed ID: 26147899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size control of gold nanocrystals in citrate reduction: the third role of citrate.
    Ji X; Song X; Li J; Bai Y; Yang W; Peng X
    J Am Chem Soc; 2007 Nov; 129(45):13939-48. PubMed ID: 17948996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size controlled green synthesis of gold nanoparticles using
    Bogireddy NKR; Pal U; Gomez LM; Agarwal V
    RSC Adv; 2018 Jul; 8(44):24819-24826. PubMed ID: 35542117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the reproducibility of Coulomb blockade phenomena for gold nanoparticles on an organic monolayer/silicon system.
    Caillard L; Sattayaporn S; Lamic-Humblot AF; Casale S; Campbell P; Chabal YJ; Pluchery O
    Nanotechnology; 2015 Feb; 26(6):065301. PubMed ID: 25611611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Facile pH Controlled Citrate-Based Reduction Method for Gold Nanoparticle Synthesis at Room Temperature.
    Tyagi H; Kushwaha A; Kumar A; Aslam M
    Nanoscale Res Lett; 2016 Dec; 11(1):362. PubMed ID: 27526178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turkevich method for gold nanoparticle synthesis revisited.
    Kimling J; Maier M; Okenve B; Kotaidis V; Ballot H; Plech A
    J Phys Chem B; 2006 Aug; 110(32):15700-7. PubMed ID: 16898714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and stabilization of gold nanoparticles induced by denaturation and renaturation of triple helical β-glucan in water.
    Jia X; Xu X; Zhang L
    Biomacromolecules; 2013 Jun; 14(6):1787-94. PubMed ID: 23659617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How does the size of gold nanoparticles depend on citrate to gold ratio in Turkevich synthesis? Final answer to a debated question.
    Shi L; Buhler E; Boué F; Carn F
    J Colloid Interface Sci; 2017 Apr; 492():191-198. PubMed ID: 28109820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of size and synthesis methods of gold nanoparticle-conjugated MαHIgG4 for use in an immunochromatographic strip test to detect brugian filariasis.
    Makhsin SR; Razak KA; Noordin R; Zakaria ND; Chun TS
    Nanotechnology; 2012 Dec; 23(49):495719. PubMed ID: 23164811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed charged zwitterionic self-assembled monolayers as a facile way to stabilize large gold nanoparticles.
    Liu X; Huang H; Jin Q; Ji J
    Langmuir; 2011 May; 27(9):5242-51. PubMed ID: 21476529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles.
    Philip D; Unni C; Aromal SA; Vidhu VK
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):899-904. PubMed ID: 21215687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method.
    Gorup LF; Longo E; Leite ER; Camargo ER
    J Colloid Interface Sci; 2011 Aug; 360(2):355-8. PubMed ID: 21616500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening.
    Bastús NG; Comenge J; Puntes V
    Langmuir; 2011 Sep; 27(17):11098-105. PubMed ID: 21728302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable and reversible aggregation of poly(ethylene oxide-st-propylene oxide) grafted gold nanoparticles.
    Durand-Gasselin C; Capelot M; Sanson N; Lequeux N
    Langmuir; 2010 Jul; 26(14):12321-9. PubMed ID: 20527978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the heating properties of platinum nanoparticles under a radiofrequency current.
    San BH; Moh SH; Kim KK
    Int J Hyperthermia; 2013; 29(2):99-105. PubMed ID: 23350813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of vapor formation of water at the solid/water interface to colloidal solutions using optically excited gold nanostructures.
    Baral S; Green AJ; Livshits MY; Govorov AO; Richardson HH
    ACS Nano; 2014 Feb; 8(2):1439-48. PubMed ID: 24476426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.