These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 25393528)

  • 21. Gold Nanoparticles Synthesized Using Various Reducing Agents and the Effect of Aging for DNA Sensing.
    Ding Y; Huang PJ; Zandieh M; Wang J; Liu J
    Langmuir; 2023 Jan; 39(1):256-264. PubMed ID: 36577094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bimodal Size Distribution of Gold Nanoparticles under Picosecond Laser Pulses.
    Inasawa S; Sugiyama M; Yamaguchi Y
    J Phys Chem B; 2005 May; 109(19):9404-10. PubMed ID: 16852127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controllable synthesis of water-soluble gold nanoparticles and their applications in electrocatalysis and surface-enhanced Raman scattering.
    Qiao Y; Chen H; Lin Y; Huang J
    Langmuir; 2011 Sep; 27(17):11090-7. PubMed ID: 21761928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct synthesis of large water-soluble functionalized gold nanoparticles using Bunte salts as ligand precursors.
    Lohse SE; Dahl JA; Hutchison JE
    Langmuir; 2010 May; 26(10):7504-11. PubMed ID: 20180591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Situ Growth and Size Regulation of Single Gold Nanoparticles in Composite Microgels.
    Thies S; Simon P; Zelenina I; Mertens L; Pich A
    Small; 2018 Dec; 14(51):e1803589. PubMed ID: 30350378
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simple method for large scale synthesis of highly monodisperse gold nanoparticles at room temperature and their electron relaxation properties.
    Polavarapu L; Xu QH
    Nanotechnology; 2009 May; 20(18):185606. PubMed ID: 19420622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanistic insights of the reduction of gold salts in the Turkevich protocol.
    Gao Y; Torrente-Murciano L
    Nanoscale; 2020 Jan; 12(4):2740-2751. PubMed ID: 31950962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of hardness on the stability of citrate-stabilized gold nanoparticles and their uptake by Daphnia magna.
    Lee BT; Ranville JF
    J Hazard Mater; 2012 Apr; 213-214():434-9. PubMed ID: 22402343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size control in the synthesis of 1-6 nm gold nanoparticles via solvent-controlled nucleation.
    Song J; Kim D; Lee D
    Langmuir; 2011 Nov; 27(22):13854-60. PubMed ID: 21955125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis, size control and fluorescence studies of gold nanoparticles in carboxymethylated chitosan aqueous solutions.
    Huang L; Zhai M; Peng J; Xu L; Li J; Wei G
    J Colloid Interface Sci; 2007 Dec; 316(2):398-404. PubMed ID: 17707389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile one-pot synthesis of near-infrared luminescent gold nanoparticles for sensing copper (II).
    Tu X; Chen W; Guo X
    Nanotechnology; 2011 Mar; 22(9):095701. PubMed ID: 21258146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One-pot aqueous phase growth of biocompatible 15-130 nm gold nanoparticles stabilized with bidentate PEG.
    Oh E; Susumu K; Jain V; Kim M; Huston A
    J Colloid Interface Sci; 2012 Jun; 376(1):107-11. PubMed ID: 22480398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of gold nanoparticles on eggshell membrane and their biosensing application.
    Zheng B; Qian L; Yuan H; Xiao D; Yang X; Paau MC; Choi MM
    Talanta; 2010 Jun; 82(1):177-83. PubMed ID: 20685454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of ultrasonic irradiation power on sonochemical synthesis of gold nanoparticles.
    Fuentes-GarcĂ­a JA; Santoyo-Salzar J; Rangel-Cortes E; Goya GF; Cardozo-Mata V; Pescador-Rojas JA
    Ultrason Sonochem; 2021 Jan; 70():105274. PubMed ID: 32771910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion.
    Huang KW; Yu CJ; Tseng WL
    Biosens Bioelectron; 2010 Jan; 25(5):984-9. PubMed ID: 19782557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uncovering Origin of Chirality of Gold Nanoparticles Prepared through the Conventional Citrate Reduction Method.
    Zhang G; Liu Q; Xu C; Li B
    Anal Chem; 2023 Apr; 95(14):6107-6114. PubMed ID: 36995160
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of halide-induced aggregation of Au nanoparticles into spongelike gold.
    Zhang Z; Li H; Zhang F; Wu Y; Guo Z; Zhou L; Li J
    Langmuir; 2014 Mar; 30(10):2648-59. PubMed ID: 24552456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size.
    Sardar R; Shumaker-Parry JS
    J Am Chem Soc; 2011 Jun; 133(21):8179-90. PubMed ID: 21548572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative study of the self-assembly of gold and silver nanoparticles onto thiophene oil.
    Gadogbe M; Ansar SM; Chu IW; Zou S; Zhang D
    Langmuir; 2014 Oct; 30(39):11520-7. PubMed ID: 25198286
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One-phase synthesis of water-soluble gold nanoparticles with control over size and surface functionalities.
    Oh E; Susumu K; Goswami R; Mattoussi H
    Langmuir; 2010 May; 26(10):7604-13. PubMed ID: 20121172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.