These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 25393548)

  • 1. Spinal mechanisms may provide a combination of intermittent and continuous control of human posture: predictions from a biologically based neuromusculoskeletal model.
    Elias LA; Watanabe RN; Kohn AF
    PLoS Comput Biol; 2014 Nov; 10(11):e1003944. PubMed ID: 25393548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of a double inverted pendulum model during human quiet stance with continuous delay feedback control.
    Suzuki Y; Nomura T; Morasso P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7450-3. PubMed ID: 22256061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural-mechanical feedback control scheme generates physiological ankle torque fluctuation during quiet stance.
    Vette AH; Masani K; Nakazawa K; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):86-95. PubMed ID: 20071280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling human postural sway using an intermittent control and hemodynamic perturbations.
    Nomura T; Oshikawa S; Suzuki Y; Kiyono K; Morasso P
    Math Biosci; 2013 Sep; 245(1):86-95. PubMed ID: 23435118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromusculoskeletal torque-generation process has a large destabilizing effect on the control mechanism of quiet standing.
    Masani K; Vette AH; Kawashima N; Popovic MR
    J Neurophysiol; 2008 Sep; 100(3):1465-75. PubMed ID: 18596181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the lambda model for human postural control during ankle strategy.
    Micheau P; Kron A; Bourassa P
    Biol Cybern; 2003 Sep; 89(3):227-36. PubMed ID: 14504941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermittent control with ankle, hip, and mixed strategies during quiet standing: a theoretical proposal based on a double inverted pendulum model.
    Suzuki Y; Nomura T; Casadio M; Morasso P
    J Theor Biol; 2012 Oct; 310():55-79. PubMed ID: 22732276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental performance evaluation of human balance control models.
    Huryn TP; Blouin JS; Croft EA; Koehle MS; Van der Loos HF
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1115-27. PubMed ID: 24771586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is spinal excitability of the triceps surae mainly affected by muscle activity or body position?
    Cattagni T; Martin A; Scaglioni G
    J Neurophysiol; 2014 Jun; 111(12):2525-32. PubMed ID: 24647434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A balance control model of quiet upright stance based on an optimal control strategy.
    Qu X; Nussbaum MA; Madigan ML
    J Biomech; 2007; 40(16):3590-7. PubMed ID: 17628566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multisensory posture control model of human upright stance.
    Mergner T; Maurer C; Peterka RJ
    Prog Brain Res; 2003; 142():189-201. PubMed ID: 12693262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling 3D control of upright stance using an optimal control strategy.
    Qu X; Nussbaum MA
    Comput Methods Biomech Biomed Engin; 2012; 15(10):1053-63. PubMed ID: 21598131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is the stabilization of quiet upright stance in humans driven by synchronized modulations of the activity of medial and lateral gastrocnemius muscles?
    Vieira TM; Windhorst U; Merletti R
    J Appl Physiol (1985); 2010 Jan; 108(1):85-97. PubMed ID: 19910338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Body sway during quiet standing: is it the residual chattering of an intermittent stabilization process?
    Bottaro A; Casadio M; Morasso PG; Sanguineti V
    Hum Mov Sci; 2005 Aug; 24(4):588-615. PubMed ID: 16143414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of body sway velocity information in controlling ankle extensor activities during quiet stance.
    Masani K; Popovic MR; Nakazawa K; Kouzaki M; Nozaki D
    J Neurophysiol; 2003 Dec; 90(6):3774-82. PubMed ID: 12944529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling balance during quiet standing: proportional and derivative controller generates preceding motor command to body sway position observed in experiments.
    Masani K; Vette AH; Popovic MR
    Gait Posture; 2006 Feb; 23(2):164-72. PubMed ID: 16399512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-joint human posture control model with realistic neural delays.
    Li Y; Levine WS; Loeb GE
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):738-48. PubMed ID: 22692939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic regulation of sensorimotor integration in human postural control.
    Peterka RJ; Loughlin PJ
    J Neurophysiol; 2004 Jan; 91(1):410-23. PubMed ID: 13679407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.