These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 25393560)

  • 1. Proteome folding kinetics is limited by protein halflife.
    Zou T; Williams N; Ozkan SB; Ghosh K
    PLoS One; 2014; 9(11):e112701. PubMed ID: 25393560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli.
    Kerner MJ; Naylor DJ; Ishihama Y; Maier T; Chang HC; Stines AP; Georgopoulos C; Frishman D; Hayer-Hartl M; Mann M; Hartl FU
    Cell; 2005 Jul; 122(2):209-20. PubMed ID: 16051146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of proteolytic susceptibility in phosphoglycerate kinases from yeast and E. coli: modulation of conformational ensembles without altering structure or stability.
    Young TA; Skordalakes E; Marqusee S
    J Mol Biol; 2007 May; 368(5):1438-47. PubMed ID: 17397866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The E. coli S30 lysate proteome: A prototype for cell-free protein production.
    Foshag D; Henrich E; Hiller E; Schäfer M; Kerger C; Burger-Kentischer A; Diaz-Moreno I; García-Mauriño SM; Dötsch V; Rupp S; Bernhard F
    N Biotechnol; 2018 Jan; 40(Pt B):245-260. PubMed ID: 28943390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-modality of pI distribution in whole proteome.
    Wu S; Wan P; Li J; Li D; Zhu Y; He F
    Proteomics; 2006 Jan; 6(2):449-55. PubMed ID: 16317776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo translation rates can substantially delay the cotranslational folding of the Escherichia coli cytosolic proteome.
    Ciryam P; Morimoto RI; Vendruscolo M; Dobson CM; O'Brien EP
    Proc Natl Acad Sci U S A; 2013 Jan; 110(2):E132-40. PubMed ID: 23256155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are protein hubs faster folders? Exploration based on Escherichia coli proteome.
    Xu HR; Cheng JF; Hu XP; Chu YY; Ma BG
    Amino Acids; 2016 Dec; 48(12):2747-2753. PubMed ID: 27515434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevalent structural disorder in E. coli and S. cerevisiae proteomes.
    Tompa P; Dosztanyi Z; Simon I
    J Proteome Res; 2006 Aug; 5(8):1996-2000. PubMed ID: 16889422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale aggregation analysis of eukaryotic proteins reveals an involvement of intrinsically disordered regions in protein folding.
    Uemura E; Niwa T; Minami S; Takemoto K; Fukuchi S; Machida K; Imataka H; Ueda T; Ota M; Taguchi H
    Sci Rep; 2018 Jan; 8(1):678. PubMed ID: 29330519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of proteostatic energy cost and its use in analysis of proteome trends and sequence evolution.
    Kepp KP; Dasmeh P
    PLoS One; 2014; 9(2):e90504. PubMed ID: 24587382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disorderness in Escherichia coli proteome: perception of folding fidelity and protein-protein interactions.
    Kahali B; Ghosh TC
    J Biomol Struct Dyn; 2013; 31(5):472-6. PubMed ID: 22889400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Barrier-limited, microsecond folding of a stable protein measured with hydrogen exchange: Implications for downhill folding.
    Meisner WK; Sosnick TR
    Proc Natl Acad Sci U S A; 2004 Nov; 101(44):15639-44. PubMed ID: 15505204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo folding of GFP fusion proteins: high efficiency in eukaryotes but not in bacteria.
    Chang HC; Kaiser CM; Hartl FU; Barral JM
    J Mol Biol; 2005 Oct; 353(2):397-409. PubMed ID: 16171814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome-wide subcellular topologies of E. coli polypeptides database (STEPdb).
    Orfanoudaki G; Economou A
    Mol Cell Proteomics; 2014 Dec; 13(12):3674-87. PubMed ID: 25210196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative actin folding reactions using yeast CCT purified via an internal tag in the CCT3/gamma subunit.
    Pappenberger G; McCormack EA; Willison KR
    J Mol Biol; 2006 Jul; 360(2):484-96. PubMed ID: 16762366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium folding of pro-HlyA from Escherichia coli reveals a stable calcium ion dependent folding intermediate.
    Thomas S; Bakkes PJ; Smits SH; Schmitt L
    Biochim Biophys Acta; 2014 Sep; 1844(9):1500-10. PubMed ID: 24865936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of Nicotinamide Adenine Dinucleotide Binding Proteins in the Escherichia coli Proteome Using a Combined Energetic- and Structural-Bioinformatics-Based Approach.
    Zeng L; Shin WH; Zhu X; Park SH; Park C; Tao WA; Kihara D
    J Proteome Res; 2017 Feb; 16(2):470-480. PubMed ID: 28152599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microsecond subdomain folding in dihydrofolate reductase.
    Arai M; Iwakura M; Matthews CR; Bilsel O
    J Mol Biol; 2011 Jul; 410(2):329-42. PubMed ID: 21554889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding the proteome.
    Braselmann E; Chaney JL; Clark PL
    Trends Biochem Sci; 2013 Jul; 38(7):337-44. PubMed ID: 23764454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.