These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25393880)

  • 1. A family-based joint test for mean and variance heterogeneity for quantitative traits.
    Cao Y; Maxwell TJ; Wei P
    Ann Hum Genet; 2015 Jan; 79(1):46-56. PubMed ID: 25393880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A versatile omnibus test for detecting mean and variance heterogeneity.
    Cao Y; Wei P; Bailey M; Kauwe JSK; Maxwell TJ
    Genet Epidemiol; 2014 Jan; 38(1):51-59. PubMed ID: 24482837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Variance-Component Model Improves Genetic Prediction in Family Datasets.
    Tucker G; Loh PR; MacLeod IM; Hayes BJ; Goddard ME; Berger B; Price AL
    Am J Hum Genet; 2015 Nov; 97(5):677-90. PubMed ID: 26544803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sibling method for identifying vQTLs.
    Conley D; Johnson R; Domingue B; Dawes C; Boardman J; Siegal ML
    PLoS One; 2018; 13(4):e0194541. PubMed ID: 29617452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A semiparametric model for vQTL mapping.
    Hong C; Ning Y; Wei P; Cao Y; Chen Y
    Biometrics; 2017 Jun; 73(2):571-581. PubMed ID: 27861717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A unified method for rare variant analysis of gene-environment interactions.
    Lim E; Chen H; Dupuis J; Liu CT
    Stat Med; 2020 Mar; 39(6):801-813. PubMed ID: 31799744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonparametric evaluation of quantitative traits in population-based association studies when the genetic model is unknown.
    Konietschke F; Libiger O; Hothorn LA
    PLoS One; 2012; 7(2):e31242. PubMed ID: 22363593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting genetic effects on phenotype variability to capture gene-by-environment interactions: a systematic method comparison.
    Zhang X; Bell JT
    G3 (Bethesda); 2024 Apr; 14(4):. PubMed ID: 38289865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear mixed models for association analysis of quantitative traits with next-generation sequencing data.
    Chiu CY; Yuan F; Zhang BS; Yuan A; Li X; Fang HB; Lange K; Weeks DE; Wilson AF; Bailey-Wilson JE; Musolf AM; Stambolian D; Lakhal-Chaieb ML; Cook RJ; McMahon FJ; Amos CI; Xiong M; Fan R
    Genet Epidemiol; 2019 Mar; 43(2):189-206. PubMed ID: 30537345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the impact of relatedness on SNP association analysis.
    Gross A; Tönjes A; Scholz M
    BMC Genet; 2017 Dec; 18(1):104. PubMed ID: 29212447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Box-Cox transformation on power of Haseman-Elston and maximum-likelihood variance components tests to detect quantitative trait Loci.
    Etzel CJ; Shete S; Beasley TM; Fernandez JR; Allison DB; Amos CI
    Hum Hered; 2003; 55(2-3):108-16. PubMed ID: 12931049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint association analysis of a binary and a quantitative trait in family samples.
    Wang S; Meigs JB; Dupuis J
    Eur J Hum Genet; 2016 Jan; 25(1):130-136. PubMed ID: 27782109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Family-based gene-environment interaction using sequence kernel association test (FGE-SKAT) for complex quantitative traits.
    Guo CY; Wang RH; Yang HC
    Sci Rep; 2021 Apr; 11(1):7431. PubMed ID: 33795796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust rare variant association testing for quantitative traits in samples with related individuals.
    Jiang D; McPeek MS
    Genet Epidemiol; 2014 Jan; 38(1):10-20. PubMed ID: 24248908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear and generalized linear models for the detection of QTL effects on within-subject variability.
    Wittenburg D; Guiard V; Liese F; Reinsch N
    Genet Res; 2007 Aug; 89(4):245-57. PubMed ID: 18208630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of complex human traits using the genomic best linear unbiased predictor.
    de Los Campos G; Vazquez AI; Fernando R; Klimentidis YC; Sorensen D
    PLoS Genet; 2013; 9(7):e1003608. PubMed ID: 23874214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Efficient Test for Gene-Environment Interaction in Generalized Linear Mixed Models with Family Data.
    Mazo Lopera MA; Coombes BJ; de Andrade M
    Int J Environ Res Public Health; 2017 Sep; 14(10):. PubMed ID: 28953253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new test for trait mean and variance detects unreported loci for blood-pressure variation.
    Breeyear JH; Mautz BS; Keaton JM; Hellwege JN; Torstenson ES; Liang J; Bray MJ; Giri A; Warren HR; Munroe PB; Velez Edwards DR; Zhu X; Li C; Edwards TL
    Am J Hum Genet; 2024 May; 111(5):954-965. PubMed ID: 38614075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantile integral linear model to quantify genetic effects on phenotypic variability.
    Miao J; Lin Y; Wu Y; Zheng B; Schmitz LL; Fletcher JM; Lu Q
    Proc Natl Acad Sci U S A; 2022 Sep; 119(39):e2212959119. PubMed ID: 36122202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome‑wide association study and genomic prediction for growth traits in yellow-plumage chicken using genotyping-by-sequencing.
    Yang R; Xu Z; Wang Q; Zhu D; Bian C; Ren J; Huang Z; Zhu X; Tian Z; Wang Y; Jiang Z; Zhao Y; Zhang D; Li N; Hu X
    Genet Sel Evol; 2021 Oct; 53(1):82. PubMed ID: 34706641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.