These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25393957)

  • 1. Effect of hydrophobic interactions on the folding mechanism of β-hairpins.
    Popp A; Wu L; Keiderling TA; Hauser K
    J Phys Chem B; 2014 Dec; 118(49):14234-42. PubMed ID: 25393957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of different β-turns in β-hairpin conformation and stability studied by optical spectroscopy.
    Wu L; McElheny D; Setnicka V; Hilario J; Keiderling TA
    Proteins; 2012 Jan; 80(1):44-60. PubMed ID: 21989967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of beta-hairpin formation.
    Dyer RB; Maness SJ; Peterson ES; Franzen S; Fesinmeyer RM; Andersen NH
    Biochemistry; 2004 Sep; 43(36):11560-6. PubMed ID: 15350142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometry and efficacy of cross-strand Trp/Trp, Trp/Tyr, and Tyr/Tyr aromatic interaction in a beta-hairpin peptide.
    Wu L; McElheny D; Takekiyo T; Keiderling TA
    Biochemistry; 2010 Jun; 49(22):4705-14. PubMed ID: 20423111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between hydrophobic interactions and secondary structure stability for Trpzip beta-hairpin peptides.
    Takekiyo T; Wu L; Yoshimura Y; Shimizu A; Keiderling TA
    Biochemistry; 2009 Feb; 48(7):1543-52. PubMed ID: 19173596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific relaxation kinetics of a tryptophan zipper hairpin peptide using temperature-jump IR spectroscopy and isotopic labeling.
    Hauser K; Krejtschi C; Huang R; Wu L; Keiderling TA
    J Am Chem Soc; 2008 Mar; 130(10):2984-92. PubMed ID: 18278908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding dynamics of the Trp-cage miniprotein: evidence for a native-like intermediate from combined time-resolved vibrational spectroscopy and molecular dynamics simulations.
    Meuzelaar H; Marino KA; Huerta-Viga A; Panman MR; Smeenk LE; Kettelarij AJ; van Maarseveen JH; Timmerman P; Bolhuis PG; Woutersen S
    J Phys Chem B; 2013 Oct; 117(39):11490-501. PubMed ID: 24050152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared study of the stability and folding kinetics of a series of β-hairpin peptides with a common NPDG turn.
    Xu Y; Du D; Oyola R
    J Phys Chem B; 2011 Dec; 115(51):15332-8. PubMed ID: 22136248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the key factors that control the rate of beta-hairpin folding.
    Du D; Zhu Y; Huang CY; Gai F
    Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15915-20. PubMed ID: 15520391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of tryptophan-tryptophan interactions in Trpzip beta-hairpin formation, structure, and stability.
    Wu L; McElheny D; Huang R; Keiderling TA
    Biochemistry; 2009 Nov; 48(43):10362-71. PubMed ID: 19788311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the mechanism of beta-hairpin folding via phi-value analysis.
    Du D; Tucker MJ; Gai F
    Biochemistry; 2006 Feb; 45(8):2668-78. PubMed ID: 16489760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromatic residues engineered into the beta-turn nucleation site of ubiquitin lead to a complex folding landscape, non-native side-chain interactions, and kinetic traps.
    Rea AM; Simpson ER; Meldrum JK; Williams HE; Searle MS
    Biochemistry; 2008 Dec; 47(48):12910-22. PubMed ID: 18991391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a mutation on the folding mechanism of a beta-hairpin.
    Juraszek J; Bolhuis PG
    J Phys Chem B; 2009 Dec; 113(50):16184-96. PubMed ID: 19924848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared study of the stability and folding kinetics of a 15-residue beta-hairpin.
    Xu Y; Oyola R; Gai F
    J Am Chem Soc; 2003 Dec; 125(50):15388-94. PubMed ID: 14664583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of amino acid hydrophobicity, aromaticity, and molecular volume on IAPP(20-29) amyloid self-assembly.
    Doran TM; Kamens AJ; Byrnes NK; Nilsson BL
    Proteins; 2012 Apr; 80(4):1053-65. PubMed ID: 22253015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of isotopic substitution methods for equilibrium and t-jump infrared studies of beta-hairpin peptide conformation.
    Hauser K; Ridderbusch O; Roy A; Hellerbach A; Huang R; Keiderling TA
    J Phys Chem B; 2010 Sep; 114(35):11628-37. PubMed ID: 20707354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of turn stability and side-chain hydrophobicity on the folding of β-structures.
    Shao Q; Wei H; Gao YQ
    J Mol Biol; 2010 Sep; 402(3):595-609. PubMed ID: 20804769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure change of β-hairpin induced by turn optimization: an enhanced sampling molecular dynamics simulation study.
    Shao Q; Yang L; Gao YQ
    J Chem Phys; 2011 Dec; 135(23):235104. PubMed ID: 22191904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence dependence of beta-hairpin structure: comparison of a salt bridge and an aromatic interaction.
    Kiehna SE; Waters ML
    Protein Sci; 2003 Dec; 12(12):2657-67. PubMed ID: 14627727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast folding and molecular dynamics of a linear hydrophobic β-hairpin.
    Raghavender US
    J Biomol Struct Dyn; 2013 Dec; 31(12):1404-10. PubMed ID: 23145986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.