BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25394180)

  • 1. Inhibitors of polyhydroxyalkanoate (PHA) synthases: synthesis, molecular docking, and implications.
    Zhang W; Chen C; Cao R; Maurmann L; Li P
    Chembiochem; 2015 Jan; 16(1):156-166. PubMed ID: 25394180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemo-enzymatic synthesis of polyhydroxyalkanoate (PHA) incorporating 2-hydroxybutyrate by wild-type class I PHA synthase from Ralstonia eutropha.
    Han X; Satoh Y; Satoh T; Matsumoto K; Kakuchi T; Taguchi S; Dairi T; Munekata M; Tajima K
    Appl Microbiol Biotechnol; 2011 Nov; 92(3):509-17. PubMed ID: 21667085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phasin proteins activate Aeromonas caviae polyhydroxyalkanoate (PHA) synthase but not Ralstonia eutropha PHA synthase.
    Ushimaru K; Motoda Y; Numata K; Tsuge T
    Appl Environ Microbiol; 2014 May; 80(9):2867-73. PubMed ID: 24584238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of Ralstonia eutropha polyhydroxyalkanoate synthase C-terminal domain and reaction mechanisms.
    Kim J; Kim YJ; Choi SY; Lee SY; Kim KJ
    Biotechnol J; 2017 Jan; 12(1):. PubMed ID: 27808482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chain transfer reaction catalyzed by various polyhydroxyalkanoate synthases with poly(ethylene glycol) as an exogenous chain transfer agent.
    Tomizawa S; Saito Y; Hyakutake M; Nakamura Y; Abe H; Tsuge T
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1427-35. PubMed ID: 20422180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chimeric enzyme composed of polyhydroxyalkanoate (PHA) synthases from Ralstonia eutropha and Aeromonas caviae enhances production of PHAs in recombinant Escherichia coli.
    Matsumoto K; Takase K; Yamamoto Y; Doi Y; Taguchi S
    Biomacromolecules; 2009 Apr; 10(4):682-5. PubMed ID: 19226108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PHA synthase (PhaC): interpreting the functions of bioplastic-producing enzyme from a structural perspective.
    Chek MF; Hiroe A; Hakoshima T; Sudesh K; Taguchi S
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1131-1141. PubMed ID: 30511262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues.
    Amara AA; Rehm BH
    Biochem J; 2003 Sep; 374(Pt 2):413-21. PubMed ID: 12924980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the surface topology of polyhydroxyalkanoate synthase: self-assembly of functionalized inclusions.
    Hooks DO; Rehm BH
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8045-53. PubMed ID: 26048474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of polyhydroxyalkanoate synthase from Aquitalea sp. USM4 suggests a novel mechanism for polymer elongation.
    Teh AH; Chiam NC; Furusawa G; Sudesh K
    Int J Biol Macromol; 2018 Nov; 119():438-445. PubMed ID: 30048726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel polyhydroxyalkanoate copolymers produced in Pseudomonas putida by metagenomic polyhydroxyalkanoate synthases.
    Cheng J; Charles TC
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7611-27. PubMed ID: 27333909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of chimeric class II polyhydroxyalkanoate synthases.
    Niamsiri N; Delamarre SC; Kim YR; Batt CA
    Appl Environ Microbiol; 2004 Nov; 70(11):6789-99. PubMed ID: 15528546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unique class I polyhydroxyalkanoate synthase (PhaC) from Brevundimonas sp. KH11J01 exists as a functional trimer: A comparative study with PhaC from Cupriavidus necator H16.
    Assefa NG; Hansen H; Altermark B
    N Biotechnol; 2022 Sep; 70():57-66. PubMed ID: 35533829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanded amino acid sequence of the PhaC box in the active center of polyhydroxyalkanoate synthases.
    Nambu Y; Ishii-Hyakutake M; Harada K; Mizuno S; Tsuge T
    FEBS Lett; 2020 Feb; 594(4):710-716. PubMed ID: 31665820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo and in vitro characterization of hydrophilic protein tag-fused Ralstonia eutropha polyhydroxyalkanoate synthase.
    Harada K; Nambu Y; Mizuno S; Tsuge T
    Int J Biol Macromol; 2019 Oct; 138():379-385. PubMed ID: 31315020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Insights into Polyhydroxyalkanoates Biosynthesis.
    Sagong HY; Son HF; Choi SY; Lee SY; Kim KJ
    Trends Biochem Sci; 2018 Oct; 43(10):790-805. PubMed ID: 30139647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical residues of class II PHA synthase for expanding the substrate specificity and enhancing the biosynthesis of polyhydroxyalkanoate.
    Chen YJ; Tsai PC; Hsu CH; Lee CY
    Enzyme Microb Technol; 2014 Mar; 56():60-6. PubMed ID: 24564904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into activation and substrate recognition of polyhydroxyalkanoate synthase from Ralstonia eutropha.
    Ushimaru K; Sangiambut S; Thomson N; Sivaniah E; Tsuge T
    Appl Microbiol Biotechnol; 2013 Feb; 97(3):1175-82. PubMed ID: 22543354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective enhancement of short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production by coexpression of genetically engineered 3-ketoacyl-acyl-carrier-protein synthase III (fabH) and polyhydroxyalkanoate synthesis genes.
    Nomura CT; Tanaka T; Gan Z; Kuwabara K; Abe H; Takase K; Taguchi K; Doi Y
    Biomacromolecules; 2004; 5(4):1457-64. PubMed ID: 15244465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is atomic rearrangement of type IV PHA synthases responsible for increased PHA production?
    Tariq A; Hameed A; Bokhari H; Masood F
    J Biomol Struct Dyn; 2015; 33(6):1225-38. PubMed ID: 25077376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.