These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 25394228)

  • 1. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures.
    Tocci G; Joly L; Michaelides A
    Nano Lett; 2014 Dec; 14(12):6872-7. PubMed ID: 25394228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and dynamics of water at water-graphene and water-hexagonal boron-nitride sheet interfaces revealed by ab initio sum-frequency generation spectroscopy.
    Ohto T; Tada H; Nagata Y
    Phys Chem Chem Phys; 2018 May; 20(18):12979-12985. PubMed ID: 29707716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong Coupling between Nanofluidic Transport and Interfacial Chemistry: How Defect Reactivity Controls Liquid-Solid Friction through Hydrogen Bonding.
    Joly L; Tocci G; Merabia S; Michaelides A
    J Phys Chem Lett; 2016 Apr; 7(7):1381-6. PubMed ID: 27012818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating Water Slip Using Atomic-Scale Defects: Friction on Realistic Hexagonal Boron Nitride Surfaces.
    Seal A; Govind Rajan A
    Nano Lett; 2021 Oct; 21(19):8008-8016. PubMed ID: 34606287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquids with Lower Wettability Can Exhibit Higher Friction on Hexagonal Boron Nitride: The Intriguing Role of Solid-Liquid Electrostatic Interactions.
    Govind Rajan A; Strano MS; Blankschtein D
    Nano Lett; 2019 Mar; 19(3):1539-1551. PubMed ID: 30694070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio nanofluidics: disentangling the role of the energy landscape and of density correlations on liquid/solid friction.
    Tocci G; Bilichenko M; Joly L; Iannuzzi M
    Nanoscale; 2020 May; 12(20):10994-11000. PubMed ID: 32426791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab Initio Molecular Dynamics Investigation on the Permeation of Sodium and Chloride Ions Through Nanopores in Graphene and Hexagonal Boron Nitride Membranes.
    Dehhaghi Y; Kiakojouri A; Frank I; Nadimi E
    Chemphyschem; 2024 May; ():e202400318. PubMed ID: 38801292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous liquid water dissociation on hybridised boron nitride and graphene atomic layers from ab initio molecular dynamics simulations.
    Grosjean B; Robert A; Vuilleumier R; Bocquet ML
    Phys Chem Chem Phys; 2020 May; 22(19):10710-10716. PubMed ID: 32103219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approaches for Achieving Superlubricity in Two-Dimensional Materials.
    Berman D; Erdemir A; Sumant AV
    ACS Nano; 2018 Mar; 12(3):2122-2137. PubMed ID: 29522673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sliding friction of graphene/hexagonal -boron nitride heterojunctions: a route to robust superlubricity.
    Mandelli D; Leven I; Hod O; Urbakh M
    Sci Rep; 2017 Sep; 7(1):10851. PubMed ID: 28883489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water friction in nanofluidic channels made from two-dimensional crystals.
    Keerthi A; Goutham S; You Y; Iamprasertkun P; Dryfe RAW; Geim AK; Radha B
    Nat Commun; 2021 May; 12(1):3092. PubMed ID: 34035239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Dimensional Magnetic Conduction Channels across Zigzag Graphene Nanoribbon/Hexagonal Boron Nitride Heterojunctions.
    Pizzochero M; Tepliakov NV; Lischner J; Mostofi AA; Kaxiras E
    Nano Lett; 2024 Jun; 24(22):6521-6528. PubMed ID: 38788172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluctuation-induced quantum friction in nanoscale water flows.
    Kavokine N; Bocquet ML; Bocquet L
    Nature; 2022 Feb; 602(7895):84-90. PubMed ID: 35110760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Good Are the Performances of Graphene and Boron Nitride Against the Wear of Copper?
    Kang MC; Park HW; Caron A
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33671043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface formation in monolayer graphene-boron nitride heterostructures.
    Sutter P; Cortes R; Lahiri J; Sutter E
    Nano Lett; 2012 Sep; 12(9):4869-74. PubMed ID: 22871166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switching stiction and adhesion of a liquid on a solid.
    Mertens SF; Hemmi A; Muff S; Gröning O; De Feyter S; Osterwalder J; Greber T
    Nature; 2016 Jun; 534(7609):676-9. PubMed ID: 27357755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slippery and Wear-Resistant Surfaces Enabled by Interface Engineered Graphene.
    Dwivedi N; Patra T; Lee JB; Yeo RJ; Srinivasan S; Dutta T; Sasikumar K; Dhand C; Tripathy S; Saifullah MSM; Danner A; Hashmi SAR; Srivastava AK; Ahn JH; Sankaranarayanan SKRS; Yang H; Bhatia CS
    Nano Lett; 2020 Feb; 20(2):905-917. PubMed ID: 31891512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water Flow in Single-Wall Nanotubes: Oxygen Makes It Slip, Hydrogen Makes It Stick.
    Thiemann FL; Schran C; Rowe P; Müller EA; Michaelides A
    ACS Nano; 2022 Jul; 16(7):10775-10782. PubMed ID: 35726839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing structural superlubricity of two-dimensional water transport with atomic resolution.
    Wu D; Zhao Z; Lin B; Song Y; Qi J; Jiang J; Yuan Z; Cheng B; Zhao M; Tian Y; Wang Z; Wu M; Bian K; Liu KH; Xu LM; Zeng XC; Wang EG; Jiang Y
    Science; 2024 Jun; 384(6701):1254-1259. PubMed ID: 38870285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the wetting translucency of hexagonal boron nitride.
    Wagemann E; Wang Y; Das S; Mitra SK
    Phys Chem Chem Phys; 2020 Apr; 22(15):7710-7718. PubMed ID: 32215391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.