These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2539434)

  • 1. Binding of iron(II) ions to the pentose sugar 2-deoxyribose.
    Aruoma OI; Chaudhary SS; Grootveld M; Halliwell B
    J Inorg Biochem; 1989 Feb; 35(2):149-55. PubMed ID: 2539434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide dismutase and Fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II).
    Gutteridge JM; Maidt L; Poyer L
    Biochem J; 1990 Jul; 269(1):169-74. PubMed ID: 2165392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of pH on OH. scavenger inhibition of damage to deoxyribose by Fenton reaction.
    Tadolini B; Cabrini L
    Mol Cell Biochem; 1990 May; 94(2):97-104. PubMed ID: 2165214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1984 Nov; 235(1):116-26. PubMed ID: 6093705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cobalt(II) ion as a promoter of hydroxyl radical and possible 'crypto-hydroxyl' radical formation under physiological conditions. Differential effects of hydroxyl radical scavengers.
    Moorhouse CP; Halliwell B; Grootveld M; Gutteridge JM
    Biochim Biophys Acta; 1985 Dec; 843(3):261-8. PubMed ID: 2998477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors that influence the deoxyribose oxidation assay for Fenton reaction products.
    Winterbourn CC
    Free Radic Biol Med; 1991; 11(4):353-60. PubMed ID: 1665835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of hydroxyl radicals in biological systems. Does myoglobin stimulate hydroxyl radical formation from hydrogen peroxide?
    Puppo A; Halliwell B
    Free Radic Res Commun; 1988; 4(6):415-22. PubMed ID: 2854107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EPR spin trapping and 2-deoxyribose degradation studies of the effect of pyridoxal isonicotinoyl hydrazone (PIH) on *OH formation by the Fenton reaction.
    Hermes-Lima M; Santos NC; Yan J; Andrews M; Schulman HM; Ponka P
    Biochim Biophys Acta; 1999 Feb; 1426(3):475-82. PubMed ID: 10076064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct demonstration that ferrous ion complexes of di- and triphosphate nucleotides catalyze hydroxyl free radical formation from hydrogen peroxide.
    Floyd RA
    Arch Biochem Biophys; 1983 Aug; 225(1):263-70. PubMed ID: 6311103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ability of scavengers to distinguish OH. production in the iron-catalyzed Haber-Weiss reaction: comparison of four assays for OH.
    Winterbourn CC
    Free Radic Biol Med; 1987; 3(1):33-9. PubMed ID: 3040537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide dismutase inhibits the superoxide-driven Fenton reaction at two different levels. Implications for a wider protective role.
    Gutteridge JM
    FEBS Lett; 1985 Jun; 185(1):19-23. PubMed ID: 2987038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radical driven Fenton reactions--evidence from paraquat radical studies for production of tetravalent iron in the presence and absence of ethylenediaminetetraacetic acid.
    Sutton HC; Vile GF; Winterbourn CC
    Arch Biochem Biophys; 1987 Aug; 256(2):462-71. PubMed ID: 3113335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyl radical formation from the auto-reduction of a ferric citrate complex.
    Gutteridge JM
    Free Radic Biol Med; 1991; 11(4):401-6. PubMed ID: 1665838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron and xanthine oxidase catalyze formation of an oxidant species distinguishable from OH.: comparison with the Haber-Weiss reaction.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1986 Jan; 244(1):27-34. PubMed ID: 3004338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reevaluating the role of 1,10-phenanthroline in oxidative reactions involving ferrous ions and DNA damage.
    de Avellar IG; Magalhães MM; Silva AB; Souza LL; Leitão AC; Hermes-Lima M
    Biochim Biophys Acta; 2004 Nov; 1675(1-3):46-53. PubMed ID: 15535966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid peroxidation and possible hydroxyl radical formation stimulated by the self-reduction of a doxorubicin-iron (III) complex.
    Gutteridge JM
    Biochem Pharmacol; 1984 Jun; 33(11):1725-8. PubMed ID: 6329216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper-ligand interactions and physiological free radical processes. pH-dependent influence of Cu2+ ions on Fe2(+)-driven OH. generation.
    Maestre P; Lambs L; Thouvenot JP; Berthon G
    Free Radic Res Commun; 1992; 15(6):305-17. PubMed ID: 1314758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of Fenton's reagent by cellobiose oxidase from cellulolytic cultures of Phanerochaete chrysosporium.
    Kremer SM; Wood PM
    Eur J Biochem; 1992 Sep; 208(3):807-14. PubMed ID: 1396686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ADP-iron as a Fenton reactant: radical reactions detected by spin trapping, hydrogen abstraction, and aromatic hydroxylation.
    Gutteridge JM; Nagy I; Maidt L; Floyd RA
    Arch Biochem Biophys; 1990 Mar; 277(2):422-8. PubMed ID: 2155582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C; Vile GF; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.