These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 25394623)

  • 21. Uniform tricalcium phosphate beads with an open porous structure for tissue engineering.
    Ryu TK; Oh MJ; Moon SK; Paik DH; Kim SE; Park JH; Choi SW
    Colloids Surf B Biointerfaces; 2013 Dec; 112():368-73. PubMed ID: 24021546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioactivity and bone healing properties of biomimetic porous composite scaffold: in vitro and in vivo studies.
    Veronesi F; Giavaresi G; Guarino V; Raucci MG; Sandri M; Tampieri A; Ambrosio L; Fini M
    J Biomed Mater Res A; 2015 Sep; 103(9):2932-41. PubMed ID: 25689266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chitosan scaffolds incorporating lysozyme into CaP coatings produced by a biomimetic route: a novel concept for tissue engineering combining a self-regulated degradation system with in situ pore formation.
    Martins AM; Pereira RC; Leonor IB; Azevedo HS; Reis RL
    Acta Biomater; 2009 Nov; 5(9):3328-36. PubMed ID: 19477305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel nano-micro structured octacalcium phosphate/protein composite coating on titanium by using an electrochemically induced deposition.
    Wang H; Lin CJ; Hu R; Zhang F; Lin LW
    J Biomed Mater Res A; 2008 Dec; 87(3):698-705. PubMed ID: 18200556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM
    J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces.
    Tamjid E; Simchi A; Dunlop JW; Fratzl P; Bagheri R; Vossoughi M
    J Biomed Mater Res A; 2013 Oct; 101(10):2796-807. PubMed ID: 23463703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced MC3T3-E1 preosteoblast response and bone formation on the addition of nano-needle and nano-porous features to microtopographical titanium surfaces.
    Zhuang XM; Zhou B; Ouyang JL; Sun HP; Wu YL; Liu Q; Deng FL
    Biomed Mater; 2014 Aug; 9(4):045001. PubMed ID: 24945708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced osteoblast differentiation on scaffolds coated with TiO2 compared to SiO2 and CaP coatings.
    Verket A; Tiainen H; Haugen HJ; Lyngstadaas SP; Nilsen O; Reseland JE
    Biointerphases; 2012 Dec; 7(1-4):36. PubMed ID: 22623280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Osteoconductivity and osteoinductivity of porous hydroxyapatite coatings deposited by liquid precursor plasma spraying: in vivo biological response study.
    Huang Y; He J; Gan L; Liu X; Wu Y; Wu F; Gu ZW
    Biomed Mater; 2014 Nov; 9(6):065007. PubMed ID: 25384201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-performance scaffolds on titanium surfaces: osteoblast differentiation and mineralization promoted by a globular fibrinogen layer through cell-autonomous BMP signaling.
    Horasawa N; Yamashita T; Uehara S; Udagawa N
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():86-96. PubMed ID: 25491963
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells.
    Chuenjitkuntaworn B; Inrung W; Damrongsri D; Mekaapiruk K; Supaphol P; Pavasant P
    J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The promotion of osteointegration under diabetic conditions using chitosan/hydroxyapatite composite coating on porous titanium surfaces.
    Ma XY; Feng YF; Ma ZS; Li X; Wang J; Wang L; Lei W
    Biomaterials; 2014 Aug; 35(26):7259-70. PubMed ID: 24912815
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rat bone marrow stromal cells-seeded porous gelatin/tricalcium phosphate/oligomeric proanthocyanidins composite scaffold for bone repair.
    Chen KY; Chung CM; Chen YS; Bau DT; Yao CH
    J Tissue Eng Regen Med; 2013 Sep; 7(9):708-19. PubMed ID: 22392838
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Covalent RGD modification of the inner pore surface of polycaprolactone scaffolds.
    Gabriel M; Nazmi K; Dahm M; Zentner A; Vahl CF; Strand D
    J Biomater Sci Polym Ed; 2012; 23(7):941-53. PubMed ID: 21457620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensionally printed polycaprolactone and β-tricalcium phosphate scaffolds for bone tissue engineering: an in vitro study.
    Sharaf B; Faris CB; Abukawa H; Susarla SM; Vacanti JP; Kaban LB; Troulis MJ
    J Oral Maxillofac Surg; 2012 Mar; 70(3):647-56. PubMed ID: 22079064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reinforcing bioceramic scaffolds with in situ synthesized ε-polycaprolactone coatings.
    Martínez-Vázquez FJ; Miranda P; Guiberteau F; Pajares A
    J Biomed Mater Res A; 2013 Dec; 101(12):3551-9. PubMed ID: 23629876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro osteoinduction of human mesenchymal stem cells in biomimetic surface modified titanium alloy implants.
    Santander S; Alcaine C; Lyahyai J; Pérez MA; Rodellar C; Doblaré M; Ochoa I
    Dent Mater J; 2012; 31(5):843-50. PubMed ID: 23037849
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Micro-computed tomography (micro-CT) as a potential tool to assess the effect of dynamic coating routes on the formation of biomimetic apatite layers on 3D-plotted biodegradable polymeric scaffolds.
    Oliveira AL; Malafaya PB; Costa SA; Sousa RA; Reis RL
    J Mater Sci Mater Med; 2007 Feb; 18(2):211-23. PubMed ID: 17323152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.