BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 25394787)

  • 1. First-principles analysis of defect-mediated Li adsorption on graphene.
    Yildirim H; Kinaci A; Zhao ZJ; Chan MK; Greeley JP
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21141-50. PubMed ID: 25394787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries.
    Fan X; Zheng WT; Kuo JL; Singh DJ
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7793-7. PubMed ID: 23863039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boron doped defective graphene as a potential anode material for Li-ion batteries.
    Hardikar RP; Das D; Han SS; Lee KR; Singh AK
    Phys Chem Chem Phys; 2014 Aug; 16(31):16502-8. PubMed ID: 24986702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A DFT investigation of lithium adsorption on graphenes as a potential anode material in lithium-ion batteries.
    De Souza LA; Monteiro de Castro G; Marques LF; Belchior JC
    J Mol Graph Model; 2021 Nov; 108():107998. PubMed ID: 34371459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Li-ion adsorption and diffusion on two-dimensional silicon with defects: a first principles study.
    Setiadi J; Arnold MD; Ford MJ
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10690-5. PubMed ID: 24090433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics and kinetics of li intercalation in irradiated graphene scaffolds.
    Song J; Ouyang B; Medhekar NV
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12968-74. PubMed ID: 24256350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?
    Yu YX
    Phys Chem Chem Phys; 2013 Oct; 15(39):16819-27. PubMed ID: 24002442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved performance of graphene doped with pyridinic N for Li-ion battery: a density functional theory model.
    Kong XK; Chen QW
    Phys Chem Chem Phys; 2013 Aug; 15(31):12982-7. PubMed ID: 23817454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and diffusion of Li on pristine and defective graphene.
    Fan X; Zheng WT; Kuo JL
    ACS Appl Mater Interfaces; 2012 May; 4(5):2432-8. PubMed ID: 22536839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption and Diffusion of Lithium and Sodium on Defective Rhenium Disulfide: A First Principles Study.
    Mukherjee S; Banwait A; Grixti S; Koratkar N; Singh CV
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5373-5384. PubMed ID: 29350901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blockage of ultrafast and directional diffusion of Li atoms on phosphorene with intrinsic defects.
    Zhang R; Wu X; Yang J
    Nanoscale; 2016 Feb; 8(7):4001-6. PubMed ID: 26817578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defective graphene as a high-capacity anode material for Na- and Ca-ion batteries.
    Datta D; Li J; Shenoy VB
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1788-95. PubMed ID: 24417606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical prediction of silicene as a new candidate for the anode of lithium-ion batteries.
    Seyed-Talebi SM; Kazeminezhad I; Beheshtian J
    Phys Chem Chem Phys; 2015 Nov; 17(44):29689-96. PubMed ID: 26477401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WS
    Bijoy TK; Sudhakaran S; Lee SC
    ACS Omega; 2024 Feb; 9(6):6482-6491. PubMed ID: 38371824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Li and Na Adsorption on Graphene and Graphene Oxide Examined by Density Functional Theory, Quantum Theory of Atoms in Molecules, and Electron Localization Function.
    Dimakis N; Salas I; Gonzalez L; Vadodaria O; Ruiz K; Bhatti MI
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30791506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Li diffusion through doped and defected graphene.
    Das D; Kim S; Lee KR; Singh AK
    Phys Chem Chem Phys; 2013 Sep; 15(36):15128-34. PubMed ID: 23925460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide.
    Sun X; Wang Z; Fu YQ
    Sci Rep; 2015 Dec; 5():18712. PubMed ID: 26692345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A first-principles study of lithium adsorption on a graphene-fullerene nanohybrid system.
    Koh W; Moon HS; Lee SG; Choi JI; Jang SS
    Chemphyschem; 2015 Mar; 16(4):789-95. PubMed ID: 25536921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive Force Field Study of Li/C Systems for Electrical Energy Storage.
    Raju M; Ganesh P; Kent PR; van Duin AC
    J Chem Theory Comput; 2015 May; 11(5):2156-66. PubMed ID: 26574418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive Study of Lithium Adsorption and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches.
    Chaney G; Ibrahim A; Ersan F; Çakır D; Ataca C
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36388-36406. PubMed ID: 34304560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.