BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25394792)

  • 1. Paleomagnetism. Solar nebula magnetic fields recorded in the Semarkona meteorite.
    Fu RR; Weiss BP; Lima EA; Harrison RJ; Bai XN; Desch SJ; Ebel DS; Suavet C; Wang H; Glenn D; Le Sage D; Kasama T; Walsworth RL; Kuan AT
    Science; 2014 Nov; 346(6213):1089-92. PubMed ID: 25394792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lifetime of the solar nebula constrained by meteorite paleomagnetism.
    Wang H; Weiss BP; Bai XN; Downey BG; Wang J; Wang J; Suavet C; Fu RR; Zucolotto ME
    Science; 2017 Feb; 355(6325):623-627. PubMed ID: 28183977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 4,565-My-old record of the solar nebula field.
    Maurel C; Gattacceca J
    Proc Natl Acad Sci U S A; 2024 Mar; 121(12):e2312802121. PubMed ID: 38437531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. History of the solar nebula from meteorite paleomagnetism.
    Weiss BP; Bai XN; Fu RR
    Sci Adv; 2021 Jan; 7(1):. PubMed ID: 33523830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tungsten isotopic constraints on the age and origin of chondrules.
    Budde G; Kleine T; Kruijer TS; Burkhardt C; Metzler K
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2886-91. PubMed ID: 26929340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paleomagnetic evidence for a disk substructure in the early solar system.
    Borlina CS; Weiss BP; Bryson JFJ; Bai XN; Lima EA; Chatterjee N; Mansbach EN
    Sci Adv; 2021 Oct; 7(42):eabj6928. PubMed ID: 34652938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The background temperature of the protoplanetary disk within the first four million years of the Solar System.
    Schrader DL; Fu RR; Desch SJ; Davidson J
    Earth Planet Sci Lett; 2018 Dec; 504():30-37. PubMed ID: 31708587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water vapour and hydrogen in the terrestrial-planet-forming region of a protoplanetary disk.
    Eisner JA
    Nature; 2007 May; 447(7144):562-4. PubMed ID: 17538613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromagnetic heating in the early solar nebula and the formation of chondrules.
    Eisenhour DD; Daulton TL; Buseck PR
    Science; 1994 Aug; 265(5175):1067-70. PubMed ID: 17832896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion.
    Johansen A; Low MM; Lacerda P; Bizzarro M
    Sci Adv; 2015 Apr; 1(3):e1500109. PubMed ID: 26601169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact jetting as the origin of chondrules.
    Johnson BC; Minton DA; Melosh HJ; Zuber MT
    Nature; 2015 Jan; 517(7534):339-41. PubMed ID: 25592538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon.
    Schiller M; Bizzarro M; Fernandes VA
    Nature; 2018 Mar; 555(7697):507-510. PubMed ID: 29565359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions.
    Bizzarro M; Baker JA; Haack H
    Nature; 2004 Sep; 431(7006):275-8. PubMed ID: 15372023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules.
    Bollard J; Connelly JN; Whitehouse MJ; Pringle EA; Bonal L; Jørgensen JK; Nordlund Å; Moynier F; Bizzarro M
    Sci Adv; 2017 Aug; 3(8):e1700407. PubMed ID: 28808680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet Chondrules: Jetting on high-velocity collision of small meteoritie particles may have produced droplet chondrules.
    Kieffer SW
    Science; 1975 Aug; 189(4200):333-40. PubMed ID: 17840811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Young chondrules in CB chondrites from a giant impact in the early Solar System.
    Krot AN; Amelin Y; Cassen P; Meibom A
    Nature; 2005 Aug; 436(7053):989-92. PubMed ID: 16107841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of chondrules in a moderately high dust enriched disk: evidence from oxygen isotopes of chondrules from the Kaba CV3 chondrite.
    Hertwig AT; Defouilloy C; Kita NT
    Geochim Cosmochim Acta; 2018 Mar; 224():116-131. PubMed ID: 30713348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chondrules as direct thermochemical sensors of solar protoplanetary disk gas.
    Libourel G; Portail M
    Sci Adv; 2018 Jul; 4(7):eaar3321. PubMed ID: 30009256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across.
    Cuzzi JN; Alexander CM
    Nature; 2006 May; 441(7092):483-5. PubMed ID: 16724060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Escape of the martian protoatmosphere and initial water inventory.
    Erkaev NV; Lammer H; Elkins-Tanton LT; Stökl A; Odert P; Marcq E; Dorfi EA; Kislyakova KG; Kulikov YN; Leitzinger M; Güdel M
    Planet Space Sci; 2014 Aug; 98():106-119. PubMed ID: 25843981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.