These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25394801)

  • 1. Aluminum stress inhibits root growth and alters physiological and metabolic responses in chickpea (Cicer arietinum L.).
    Choudhury S; Sharma P
    Plant Physiol Biochem; 2014 Dec; 85():63-70. PubMed ID: 25394801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India.
    Awasthi JP; Saha B; Regon P; Sahoo S; Chowra U; Pradhan A; Roy A; Panda SK
    PLoS One; 2017; 12(4):e0176357. PubMed ID: 28448589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid activation of catalase followed by citrate efflux effectively improves aluminum tolerance in the roots of chick pea (Cicer arietinum).
    Sharma M; Sharma V; Tripathi BN
    Protoplasma; 2016 May; 253(3):709-718. PubMed ID: 26615604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the expression level of stress-related genes in Cicer arietinum root cell under Cd stress and the relationship to H
    Kar M
    Ecotoxicology; 2018 Oct; 27(8):1087-1094. PubMed ID: 29992399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Physiological and Metabolic Analysis Reveals a Complex Mechanism Involved in Drought Tolerance in Chickpea (Cicer arietinum L.) Induced by PGPR and PGRs.
    Khan N; Bano A; Rahman MA; Guo J; Kang Z; Babar MA
    Sci Rep; 2019 Feb; 9(1):2097. PubMed ID: 30765803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aluminium-induced excessive ROS causes cellular damage and metabolic shifts in black gram Vigna mungo (L.) Hepper.
    Chowra U; Yanase E; Koyama H; Panda SK
    Protoplasma; 2017 Jan; 254(1):293-302. PubMed ID: 26769708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seed priming improves chilling tolerance in chickpea by modulating germination metabolism, trehalose accumulation and carbon assimilation.
    Farooq M; Hussain M; Nawaz A; Lee DJ; Alghamdi SS; Siddique KHM
    Plant Physiol Biochem; 2017 Feb; 111():274-283. PubMed ID: 27987472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UPLC-HRMS-based untargeted metabolic profiling reveals changes in chickpea (Cicer arietinum) metabolome following long-term drought stress.
    Khan N; Bano A; Rahman MA; Rathinasabapathi B; Babar MA
    Plant Cell Environ; 2019 Jan; 42(1):115-132. PubMed ID: 29532945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological disruption, structural deformation and low grain yield induced by neonicotinoid insecticides in chickpea: A long term phytotoxicity investigation.
    Shahid M; Khan MS; Ahmed B; Syed A; Bahkali AH
    Chemosphere; 2021 Jan; 262():128388. PubMed ID: 33182095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-sowing static magnetic field treatment for improving water and radiation use efficiency in chickpea (Cicer arietinum L.) under soil moisture stress.
    Mridha N; Chattaraj S; Chakraborty D; Anand A; Aggarwal P; Nagarajan S
    Bioelectromagnetics; 2016 Sep; 37(6):400-8. PubMed ID: 27442612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic and physiological changes induced by plant growth regulators and plant growth promoting rhizobacteria and their impact on drought tolerance in Cicer arietinum L.
    Khan N; Bano A; Babar MA
    PLoS One; 2019; 14(3):e0213040. PubMed ID: 30830939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity.
    Garg N; Bhandari P
    Protoplasma; 2016 Sep; 253(5):1325-45. PubMed ID: 26468060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some synthetic cyclitol derivatives alleviate the effect of water deficit in cultivated and wild-type chickpea species.
    Çevik S; Yıldızlı A; Yandım G; Göksu H; Gultekin MS; Güzel Değer A; Çelik A; Şimşek Kuş N; Ünyayar S
    J Plant Physiol; 2014 Jun; 171(10):807-16. PubMed ID: 24877672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls.
    Nasr Esfahani M; Sulieman S; Schulze J; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS
    Plant J; 2014 Sep; 79(6):964-80. PubMed ID: 24947137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. alpha-Pinene inhibits growth and induces oxidative stress in roots.
    Singh HP; Batish DR; Kaur S; Arora K; Kohli RK
    Ann Bot; 2006 Dec; 98(6):1261-9. PubMed ID: 17028297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative physiological and leaf proteome analysis between drought-tolerant chickpea
    Cevik S; Akpinar G; Yildizli A; Kasap M; Karaosmanoglu K; Unyayar S
    J Biosci; 2019 Mar; 44(1):. PubMed ID: 30837371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conditioning of Roots with Hypoxia Increases Aluminum and Acid Stress Tolerance by Mitigating Activation of K+ Efflux Channels by ROS in Barley: Insights into Cross-Tolerance Mechanisms.
    Ma Y; Zhu M; Shabala L; Zhou M; Shabala S
    Plant Cell Physiol; 2016 Jan; 57(1):160-73. PubMed ID: 26581863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SA and AM symbiosis modulate antioxidant defense mechanisms and asada pathway in chickpea genotypes under salt stress.
    Bharti A; Garg N
    Ecotoxicol Environ Saf; 2019 Aug; 178():66-78. PubMed ID: 30999182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of TiO2 nanoparticles on chickpea response to cold stress.
    Mohammadi R; Maali-Amiri R; Abbasi A
    Biol Trace Elem Res; 2013 Jun; 152(3):403-10. PubMed ID: 23456351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vanadium toxicity in chickpea (Cicer arietinum L.) grown in red soil: Effects on cell death, ROS and antioxidative systems.
    Imtiaz M; Ashraf M; Rizwan MS; Nawaz MA; Rizwan M; Mehmood S; Yousaf B; Yuan Y; Ditta A; Mumtaz MA; Ali M; Mahmood S; Tu S
    Ecotoxicol Environ Saf; 2018 Aug; 158():139-144. PubMed ID: 29677596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.