BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25394904)

  • 1. Evolution of context dependent regulation by expansion of feast/famine regulatory proteins.
    Plaisier CL; Lo FY; Ashworth J; Brooks AN; Beer KD; Kaur A; Pan M; Reiss DJ; Facciotti MT; Baliga NS
    BMC Syst Biol; 2014 Nov; 8():122. PubMed ID: 25394904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feast/famine regulatory proteins (FFRPs): Escherichia coli Lrp, AsnC and related archaeal transcription factors.
    Yokoyama K; Ishijima SA; Clowney L; Koike H; Aramaki H; Tanaka C; Makino K; Suzuki M
    FEMS Microbiol Rev; 2006 Jan; 30(1):89-108. PubMed ID: 16438681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The RosR transcription factor is required for gene expression dynamics in response to extreme oxidative stress in a hypersaline-adapted archaeon.
    Sharma K; Gillum N; Boyd JL; Schmid A
    BMC Genomics; 2012 Jul; 13():351. PubMed ID: 22846541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A predictive model for transcriptional control of physiology in a free living cell.
    Bonneau R; Facciotti MT; Reiss DJ; Schmid AK; Pan M; Kaur A; Thorsson V; Shannon P; Johnson MH; Bare JC; Longabaugh W; Vuthoori M; Whitehead K; Madar A; Suzuki L; Mori T; Chang DE; Diruggiero J; Johnson CH; Hood L; Baliga NS
    Cell; 2007 Dec; 131(7):1354-65. PubMed ID: 18160043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inference of expanded Lrp-like feast/famine transcription factor targets in a non-model organism using protein structure-based prediction.
    Ashworth J; Plaisier CL; Lo FY; Reiss DJ; Baliga NS
    PLoS One; 2014; 9(9):e107863. PubMed ID: 25255272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Niche adaptation by expansion and reprogramming of general transcription factors.
    Turkarslan S; Reiss DJ; Gibbins G; Su WL; Pan M; Bare JC; Plaisier CL; Baliga NS
    Mol Syst Biol; 2011 Nov; 7():554. PubMed ID: 22108796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth-Phase-Specific Modulation of Cell Morphology and Gene Expression by an Archaeal Histone Protein.
    Dulmage KA; Todor H; Schmid AK
    mBio; 2015 Sep; 6(5):e00649-15. PubMed ID: 26350964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory multidimensionality of gas vesicle biogenesis in Halobacterium salinarum NRC-1.
    Yao AI; Facciotti MT
    Archaea; 2011; 2011():716456. PubMed ID: 22110395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variations in the multiple tbp genes in different Halobacterium salinarum strains and their expression during growth.
    Teufel K; Bleiholder A; Griesbach T; Pfeifer F
    Arch Microbiol; 2008 Sep; 190(3):309-18. PubMed ID: 18506423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two transcription factors are necessary for iron homeostasis in a salt-dwelling archaeon.
    Schmid AK; Pan M; Sharma K; Baliga NS
    Nucleic Acids Res; 2011 Apr; 39(7):2519-33. PubMed ID: 21109526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OMICS in ecology: systems level analyses of Halobacterium salinarum reveal large-scale temperature-mediated changes and a requirement of CctA for thermotolerance.
    Weng RR; Shu HW; Chin SW; Kao Y; Chen TW; Liao CC; Tsay YG; Ng WV
    OMICS; 2014 Jan; 18(1):65-80. PubMed ID: 24147786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription regulation by feast/famine regulatory proteins, FFRPs, in archaea and eubacteria.
    Kawashima T; Aramaki H; Oyamada T; Makino K; Yamada M; Okamura H; Yokoyama K; Ishijima SA; Suzuki M
    Biol Pharm Bull; 2008 Feb; 31(2):173-86. PubMed ID: 18239270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional control by two leucine-responsive regulatory proteins in Halobacterium salinarum R1.
    Schwaiger R; Schwarz C; Furtwängler K; Tarasov V; Wende A; Oesterhelt D
    BMC Mol Biol; 2010 May; 11():40. PubMed ID: 20509863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-DNA binding dynamics predict transcriptional response to nutrients in archaea.
    Todor H; Sharma K; Pittman AM; Schmid AK
    Nucleic Acids Res; 2013 Oct; 41(18):8546-58. PubMed ID: 23892291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single transcription factor regulates evolutionarily diverse but functionally linked metabolic pathways in response to nutrient availability.
    Schmid AK; Reiss DJ; Pan M; Koide T; Baliga NS
    Mol Syst Biol; 2009; 5():282. PubMed ID: 19536205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.
    Todor H; Gooding J; Ilkayeva OR; Schmid AK
    PLoS One; 2015; 10(8):e0135693. PubMed ID: 26284786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A transcription factor links growth rate and metabolism in the hypersaline adapted archaeon Halobacterium salinarum.
    Todor H; Dulmage K; Gillum N; Bain JR; Muehlbauer MJ; Schmid AK
    Mol Microbiol; 2014 Sep; 93(6):1172-82. PubMed ID: 25060603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The leucine-responsive regulatory proteins/feast-famine regulatory proteins: an ancient and complex class of transcriptional regulators in bacteria and archaea.
    Ziegler CA; Freddolino PL
    Crit Rev Biochem Mol Biol; 2021 Aug; 56(4):373-400. PubMed ID: 34151666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversification at transcription factor binding sites within a species and the implications for environmental adaptation.
    Ames RM; Lovell SC
    Mol Biol Evol; 2011 Dec; 28(12):3331-44. PubMed ID: 21693437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A structural code for discriminating between transcription signals revealed by the feast/famine regulatory protein DM1 in complex with ligands.
    Okamura H; Yokoyama K; Koike H; Yamada M; Shimowasa A; Kabasawa M; Kawashima T; Suzuki M
    Structure; 2007 Oct; 15(10):1325-38. PubMed ID: 17937921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.