These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 25395899)
1. Modeling thermophoretic effects in solid-state nanopores. Belkin M; Chao SH; Giannetti G; Aksimentiev A J Comput Electron; 2014 Dec; 13(4):826-838. PubMed ID: 25395899 [TBL] [Abstract][Full Text] [Related]
2. Stretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores. Belkin M; Maffeo C; Wells DB; Aksimentiev A ACS Nano; 2013 Aug; 7(8):6816-24. PubMed ID: 23876013 [TBL] [Abstract][Full Text] [Related]
3. Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores. Belkin M; Aksimentiev A ACS Appl Mater Interfaces; 2016 May; 8(20):12599-608. PubMed ID: 26963065 [TBL] [Abstract][Full Text] [Related]
4. Multi-resolution simulation of DNA transport through large synthetic nanostructures. Choudhary A; Maffeo C; Aksimentiev A Phys Chem Chem Phys; 2022 Feb; 24(5):2706-2716. PubMed ID: 35050282 [TBL] [Abstract][Full Text] [Related]
5. Microsecond simulations of DNA and ion transport in nanopores with novel ion-ion and ion-nucleotides effective potentials. De Biase PM; Markosyan S; Noskov S J Comput Chem; 2014 Apr; 35(9):711-21. PubMed ID: 24738152 [TBL] [Abstract][Full Text] [Related]
6. Effect of confinement on DNA, solvent and counterion dynamics in a model biological nanopore. Markosyan S; De Biase PM; Czapla L; Samoylova O; Singh G; Cuervo J; Tieleman DP; Noskov SY Nanoscale; 2014 Aug; 6(15):9006-16. PubMed ID: 24968858 [TBL] [Abstract][Full Text] [Related]
7. Optimization of the molecular dynamics method for simulations of DNA and ion transport through biological nanopores. Wells DB; Bhattacharya S; Carr R; Maffeo C; Ho A; Comer J; Aksimentiev A Methods Mol Biol; 2012; 870():165-86. PubMed ID: 22528264 [TBL] [Abstract][Full Text] [Related]
8. Coarse-grained molecular dynamics study of wettability influence on protein translocation through solid nanopores. Liu Z; Shi X; Wu H Nanotechnology; 2019 Apr; 30(16):165701. PubMed ID: 30634172 [TBL] [Abstract][Full Text] [Related]
9. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter. Akahori R; Haga T; Hatano T; Yanagi I; Ohura T; Hamamura H; Iwasaki T; Yokoi T; Anazawa T Nanotechnology; 2014 Jul; 25(27):275501. PubMed ID: 24960034 [TBL] [Abstract][Full Text] [Related]
10. Thermodiffusion of ions in nanoconfined aqueous electrolytes. Yang Y; Zhang X; Tian Z; Deissmann G; Bosbach D; Liang P; Wang M J Colloid Interface Sci; 2022 Aug; 619():331-338. PubMed ID: 35398764 [TBL] [Abstract][Full Text] [Related]
11. Toward detection of DNA-bound proteins using solid-state nanopores: insights from computer simulations. Comer J; Ho A; Aksimentiev A Electrophoresis; 2012 Dec; 33(23):3466-79. PubMed ID: 23147918 [TBL] [Abstract][Full Text] [Related]
12. Rapid and Accurate Determination of Nanopore Ionic Current Using a Steric Exclusion Model. Wilson J; Sarthak K; Si W; Gao L; Aksimentiev A ACS Sens; 2019 Mar; 4(3):634-644. PubMed ID: 30821441 [TBL] [Abstract][Full Text] [Related]
13. A coarse-grained MARTINI-like force field for DNA unzipping in nanopores. Stachiewicz A; Molski A J Comput Chem; 2015 May; 36(13):947-56. PubMed ID: 25706623 [TBL] [Abstract][Full Text] [Related]
14. Base-by-base ratcheting of single stranded DNA through a solid-state nanopore. Luan B; Peng H; Polonsky S; Rossnagel S; Stolovitzky G; Martyna G Phys Rev Lett; 2010 Jun; 104(23):238103. PubMed ID: 20867275 [TBL] [Abstract][Full Text] [Related]
15. Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients. Zhang Y; Wu G; Si W; Ma J; Yuan Z; Xie X; Liu L; Sha J; Li D; Chen Y Nanoscale; 2017 Jan; 9(2):930-939. PubMed ID: 28000822 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels. Wu C; Xu X; Qian T J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493 [TBL] [Abstract][Full Text] [Related]
17. In silico all-atom approach to thermodiffusion in dilute aqueous solutions. Diaz-Marquez A; Stirnemann G J Chem Phys; 2021 Nov; 155(17):174503. PubMed ID: 34742198 [TBL] [Abstract][Full Text] [Related]
19. Modeling Transport Through Synthetic Nanopores. Aksimentiev A; Brunner RK; Cruz-Chú E; Comer J; Schulten K IEEE Nanotechnol Mag; 2009 Mar; 3(1):20-28. PubMed ID: 21909347 [TBL] [Abstract][Full Text] [Related]
20. Spatial blockage of ionic current for electrophoretic translocation of DNA through a graphene nanopore. Lv W; Liu S; Li X; Wu R Electrophoresis; 2014 Apr; 35(8):1144-51. PubMed ID: 24459097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]