BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25395920)

  • 1. Arrayed Hollow Channels in Silk-based Scaffolds Provide Functional Outcomes for Engineering Critically-sized Tissue Constructs.
    Rnjak-Kovacina J; Wray LS; Golinski JM; Kaplan DL
    Adv Funct Mater; 2014 Apr; 24(15):2188-2196. PubMed ID: 25395920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs.
    Wray LS; Rnjak-Kovacina J; Mandal BB; Schmidt DF; Gil ES; Kaplan DL
    Biomaterials; 2012 Dec; 33(36):9214-24. PubMed ID: 23036961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slowly degradable porous silk microfabricated scaffolds for vascularized tissue formation.
    Wray LS; Tsioris K; Gi ES; Omenetto FG; Kaplan DL
    Adv Funct Mater; 2013 Jul; 23(27):3404-3412. PubMed ID: 24058328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic silk biomaterials containing cardiac extracellular matrix for cardiac tissue engineering.
    Stoppel WL; Hu D; Domian IJ; Kaplan DL; Black LD
    Biomed Mater; 2015 Mar; 10(3):034105. PubMed ID: 25826196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microchannels Are an Architectural Cue That Promotes Integration and Vascularization of Silk Biomaterials in Vivo.
    Tang F; Manz XD; Bongers A; Odell RA; Joukhdar H; Whitelock JM; Lord MS; Rnjak-Kovacina J
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1476-1486. PubMed ID: 33455399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascularization of hollow channel-modified porous silk scaffolds with endothelial cells for tissue regeneration.
    Zhang W; Wray LS; Rnjak-Kovacina J; Xu L; Zou D; Wang S; Zhang M; Dong J; Li G; Kaplan DL; Jiang X
    Biomaterials; 2015 Jul; 56():68-77. PubMed ID: 25934280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elimination of Induced Hypoxic Regions in Depth of 3D Porous Silk Scaffolds by the Introduction of Channel Configuration.
    Tabesh H; Elahi Z; Amoabediny Z; Rafiei F
    Biomed Res Int; 2022; 2022():9767687. PubMed ID: 35342757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular Pedicle and Microchannels: Simple Methods Toward Effective In Vivo Vascularization of 3D Scaffolds.
    Rnjak-Kovacina J; Gerrand YW; Wray LS; Tan B; Joukhdar H; Kaplan DL; Morrison WA; Mitchell GM
    Adv Healthc Mater; 2019 Dec; 8(24):e1901106. PubMed ID: 31714024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silk as a Biomaterial to Support Long-Term Three-Dimensional Tissue Cultures.
    Abbott RD; Kimmerling EP; Cairns DM; Kaplan DL
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):21861-8. PubMed ID: 26849288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silk Biomaterials with Vascularization Capacity.
    Han H; Ning H; Liu S; Lu Q; Fan Z; Lu H; Lu G; Kaplan DL
    Adv Funct Mater; 2016 Jan; 26(3):421-436. PubMed ID: 27293388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo evaluation of adenovirus combined silk fibroin scaffolds for bone morphogenetic protein-7 gene delivery.
    Zhang Y; Fan W; Nothdurft L; Wu C; Zhou Y; Crawford R; Xiao Y
    Tissue Eng Part C Methods; 2011 Aug; 17(8):789-97. PubMed ID: 21506685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering.
    Contessi Negrini N; Bonnetier M; Giatsidis G; Orgill DP; Farè S; Marelli B
    Acta Biomater; 2019 Mar; 87():61-75. PubMed ID: 30654214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Channels in a porous scaffold: a new player for vascularization.
    Kang Y; Chang J
    Regen Med; 2018 Sep; 13(6):705-715. PubMed ID: 30246614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells.
    Ghanaati S; Unger RE; Webber MJ; Barbeck M; Orth C; Kirkpatrick JA; Booms P; Motta A; Migliaresi C; Sader RA; Kirkpatrick CJ
    Biomaterials; 2011 Nov; 32(32):8150-60. PubMed ID: 21821280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lyophilized Silk Sponges: A Versatile Biomaterial Platform for Soft Tissue Engineering.
    Rnjak-Kovacina J; Wray LS; Burke KA; Torregrosa T; Golinski JM; Huang W; Kaplan DL
    ACS Biomater Sci Eng; 2015 Apr; 1(4):260-270. PubMed ID: 25984573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole Organ Tissue Vascularization: Engineering the Tree to Develop the Fruits.
    Pellegata AF; Tedeschi AM; De Coppi P
    Front Bioeng Biotechnol; 2018; 6():56. PubMed ID: 29868573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kidney regeneration with biomimetic vascular scaffolds based on vascular corrosion casts.
    Huling J; Min SI; Kim DS; Ko IK; Atala A; Yoo JJ
    Acta Biomater; 2019 Sep; 95():328-336. PubMed ID: 30953799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs.
    Bettahalli NM; Vicente J; Moroni L; Higuera GA; van Blitterswijk CA; Wessling M; Stamatialis DF
    Acta Biomater; 2011 Sep; 7(9):3312-24. PubMed ID: 21704736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes.
    Wang Y; Blasioli DJ; Kim HJ; Kim HS; Kaplan DL
    Biomaterials; 2006 Sep; 27(25):4434-42. PubMed ID: 16677707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs.
    Janani G; Nandi SK; Mandal BB
    Acta Biomater; 2018 Feb; 67():167-182. PubMed ID: 29223705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.