These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 25396367)

  • 1. Exploring unconventional Hubbard models with doubly modulated lattice gases.
    Greschner S; Santos L; Poletti D
    Phys Rev Lett; 2014 Oct; 113(18):183002. PubMed ID: 25396367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold attractive spin polarized Fermi lattice gases and the doped positive U Hubbard model.
    Moreo A; Scalapino DJ
    Phys Rev Lett; 2007 May; 98(21):216402. PubMed ID: 17677791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Majorana Corner Modes with Solitons in an Attractive Hubbard-Hofstadter Model of Cold Atom Optical Lattices.
    Zeng C; Stanescu TD; Zhang C; Scarola VW; Tewari S
    Phys Rev Lett; 2019 Aug; 123(6):060402. PubMed ID: 31491186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hopping modulation in a one-dimensional Fermi-Hubbard Hamiltonian.
    Massel F; Leskinen MJ; Törmä P
    Phys Rev Lett; 2009 Aug; 103(6):066404. PubMed ID: 19792589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bond order solid of two-dimensional dipolar fermions.
    Bhongale SG; Mathey L; Tsai SW; Clark CW; Zhao E
    Phys Rev Lett; 2012 Apr; 108(14):145301. PubMed ID: 22540802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced
    Yang S; Liu X; Li W; Yang J; Ying T; Li X; Sun X
    J Phys Condens Matter; 2022 Jul; 34(37):. PubMed ID: 35790173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms.
    Hart RA; Duarte PM; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Huse DA; Hulet RG
    Nature; 2015 Mar; 519(7542):211-4. PubMed ID: 25707803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cold-atom Fermi-Hubbard antiferromagnet.
    Mazurenko A; Chiu CS; Ji G; Parsons MF; Kanász-Nagy M; Schmidt R; Grusdt F; Demler E; Greif D; Greiner M
    Nature; 2017 May; 545(7655):462-466. PubMed ID: 28541324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots.
    Wang X; Khatami E; Fei F; Wyrick J; Namboodiri P; Kashid R; Rigosi AF; Bryant G; Silver R
    Nat Commun; 2022 Nov; 13(1):6824. PubMed ID: 36369280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Mott insulator of fermionic atoms in an optical lattice.
    Jördens R; Strohmaier N; Günter K; Moritz H; Esslinger T
    Nature; 2008 Sep; 455(7210):204-7. PubMed ID: 18784720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective Hamiltonians for Rapidly Driven Many-Body Lattice Systems: Induced Exchange Interactions and Density-Dependent Hoppings.
    Itin AP; Katsnelson MI
    Phys Rev Lett; 2015 Aug; 115(7):075301. PubMed ID: 26317726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring competing density order in the ionic Hubbard model with ultracold fermions.
    Messer M; Desbuquois R; Uehlinger T; Jotzu G; Huber S; Greif D; Esslinger T
    Phys Rev Lett; 2015 Sep; 115(11):115303. PubMed ID: 26406839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hidden String Order in a Hole Superconductor with Extended Correlated Hopping.
    Chhajlany RW; Grzybowski PR; Stasińska J; Lewenstein M; Dutta O
    Phys Rev Lett; 2016 Jun; 116(22):225303. PubMed ID: 27314724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice.
    Schneider U; Hackermüller L; Will S; Best T; Bloch I; Costi TA; Helmes RW; Rasch D; Rosch A
    Science; 2008 Dec; 322(5907):1520-5. PubMed ID: 19056980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermi condensation near van Hove singularities within the Hubbard model on the triangular lattice.
    Yudin D; Hirschmeier D; Hafermann H; Eriksson O; Lichtenstein AI; Katsnelson MI
    Phys Rev Lett; 2014 Feb; 112(7):070403. PubMed ID: 24579572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum insulating states of F=2 cold atoms in optical lattices.
    Zhou F; Semenoff GW
    Phys Rev Lett; 2006 Nov; 97(18):180411. PubMed ID: 17155528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Many-body dynamic localization of strongly correlated electrons in ac-driven Hubbard lattices.
    Longhi S
    J Phys Condens Matter; 2012 Oct; 24(43):435601. PubMed ID: 23032640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metastable superfluidity of repulsive fermionic atoms in optical lattices.
    Rosch A; Rasch D; Binz B; Vojta M
    Phys Rev Lett; 2008 Dec; 101(26):265301. PubMed ID: 19437648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of inhomogeneous distributions of ultracold atoms in an optical lattice via a massively parallel implementation of nonequilibrium strong-coupling perturbation theory.
    Dirks A; Mikelsons K; Krishnamurthy HR; Freericks JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023306. PubMed ID: 25353604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultracold fermions and the SU(N) Hubbard model.
    Honerkamp C; Hofstetter W
    Phys Rev Lett; 2004 Apr; 92(17):170403. PubMed ID: 15169134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.