These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 25396371)
1. Weak ergodicity breaking and aging of chaotic transport in Hamiltonian systems. Albers T; Radons G Phys Rev Lett; 2014 Oct; 113(18):184101. PubMed ID: 25396371 [TBL] [Abstract][Full Text] [Related]
2. Ergodicity breaking and particle spreading in noisy heterogeneous diffusion processes. Cherstvy AG; Metzler R J Chem Phys; 2015 Apr; 142(14):144105. PubMed ID: 25877560 [TBL] [Abstract][Full Text] [Related]
3. Aging underdamped scaled Brownian motion: Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation. Safdari H; Cherstvy AG; Chechkin AV; Bodrova A; Metzler R Phys Rev E; 2017 Jan; 95(1-1):012120. PubMed ID: 28208482 [TBL] [Abstract][Full Text] [Related]
4. Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. Burov S; Jeon JH; Metzler R; Barkai E Phys Chem Chem Phys; 2011 Feb; 13(5):1800-12. PubMed ID: 21203639 [TBL] [Abstract][Full Text] [Related]
5. Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity. Cherstvy AG; Chechkin AV; Metzler R Soft Matter; 2014 Mar; 10(10):1591-601. PubMed ID: 24652104 [TBL] [Abstract][Full Text] [Related]
6. Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes. Wang W; Cherstvy AG; Kantz H; Metzler R; Sokolov IM Phys Rev E; 2021 Aug; 104(2-1):024105. PubMed ID: 34525678 [TBL] [Abstract][Full Text] [Related]
7. Anomalous diffusion in a quenched-trap model on fractal lattices. Miyaguchi T; Akimoto T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):010102. PubMed ID: 25679550 [TBL] [Abstract][Full Text] [Related]
8. Finite-time effects and ultraweak ergodicity breaking in superdiffusive dynamics. Godec A; Metzler R Phys Rev Lett; 2013 Jan; 110(2):020603. PubMed ID: 23383882 [TBL] [Abstract][Full Text] [Related]
9. Truncated Lévy flights and weak ergodicity breaking in the Hamiltonian mean-field model. Figueiredo A; Filho TM; Amato MA; Oliveira ZT; Matsushita R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022106. PubMed ID: 25353421 [TBL] [Abstract][Full Text] [Related]
10. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Metzler R; Jeon JH; Cherstvy AG; Barkai E Phys Chem Chem Phys; 2014 Nov; 16(44):24128-64. PubMed ID: 25297814 [TBL] [Abstract][Full Text] [Related]
11. Anomalous Diffusion in Random Dynamical Systems. Sato Y; Klages R Phys Rev Lett; 2019 May; 122(17):174101. PubMed ID: 31107078 [TBL] [Abstract][Full Text] [Related]
12. In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Jeon JH; Tejedor V; Burov S; Barkai E; Selhuber-Unkel C; Berg-Sørensen K; Oddershede L; Metzler R Phys Rev Lett; 2011 Jan; 106(4):048103. PubMed ID: 21405366 [TBL] [Abstract][Full Text] [Related]
14. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. Jeon JH; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021103. PubMed ID: 20365526 [TBL] [Abstract][Full Text] [Related]
15. Scaled geometric Brownian motion features sub- or superexponential ensemble-averaged, but linear time-averaged mean-squared displacements. Cherstvy AG; Vinod D; Aghion E; Sokolov IM; Metzler R Phys Rev E; 2021 Jun; 103(6-1):062127. PubMed ID: 34271619 [TBL] [Abstract][Full Text] [Related]
16. Subdiffusion of mixed origins: when ergodicity and nonergodicity coexist. Meroz Y; Sokolov IM; Klafter J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):010101. PubMed ID: 20365308 [TBL] [Abstract][Full Text] [Related]
17. Fractional Lévy stable motion can model subdiffusive dynamics. Burnecki K; Weron A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021130. PubMed ID: 20866798 [TBL] [Abstract][Full Text] [Related]
18. Numerical approach to unbiased and driven generalized elastic model. Ghasemi Nezhadhaghighi M; Chechkin A; Metzler R J Chem Phys; 2014 Jan; 140(2):024106. PubMed ID: 24437864 [TBL] [Abstract][Full Text] [Related]
19. Self-averaging and ergodicity of subdiffusion in quenched random media. Dentz M; Russian A; Gouze P Phys Rev E; 2016 Jan; 93(1):010101. PubMed ID: 26871007 [TBL] [Abstract][Full Text] [Related]
20. Self-averaging and weak ergodicity breaking of diffusion in heterogeneous media. Russian A; Dentz M; Gouze P Phys Rev E; 2017 Aug; 96(2-1):022156. PubMed ID: 28950545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]