These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 25396390)

  • 1. Frequency comb generation in superconducting resonators.
    Erickson RP; Vissers MR; Sandberg M; Jefferts SR; Pappas DP
    Phys Rev Lett; 2014 Oct; 113(18):187002. PubMed ID: 25396390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators.
    Xue X; Xuan Y; Wang C; Wang PH; Liu Y; Niu B; Leaird DE; Qi M; Weiner AM
    Opt Express; 2016 Jan; 24(1):687-98. PubMed ID: 26832298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-Chip Microwave Frequency Combs in a Superconducting Nanoelectromechanical Device.
    Shin J; Ryu Y; Miri MA; Shim SB; Choi H; Alù A; Suh J; Cha J
    Nano Lett; 2022 Jul; 22(13):5459-5465. PubMed ID: 35708318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators.
    Chembo YK; Strekalov DV; Yu N
    Phys Rev Lett; 2010 Mar; 104(10):103902. PubMed ID: 20366426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flat, rectangular frequency comb generation with tunable bandwidth and frequency spacing.
    Preussler S; Wenzel N; Schneider T
    Opt Lett; 2014 Mar; 39(6):1637-40. PubMed ID: 24690857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of two-cycle pulses and octave-spanning frequency combs in a dispersion-flattened micro-resonator.
    Zhang L; Bao C; Singh V; Mu J; Yang C; Agarwal AM; Kimerling LC; Michel J
    Opt Lett; 2013 Dec; 38(23):5122-5. PubMed ID: 24281525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical frequency comb generation from a monolithic microresonator.
    Del'Haye P; Schliesser A; Arcizet O; Wilken T; Holzwarth R; Kippenberg TJ
    Nature; 2007 Dec; 450(7173):1214-7. PubMed ID: 18097405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical frequency comb generation from aluminum nitride microring resonator.
    Jung H; Xiong C; Fong KY; Zhang X; Tang HX
    Opt Lett; 2013 Aug; 38(15):2810-3. PubMed ID: 23903149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chip-based frequency combs with sub-100 GHz repetition rates.
    Johnson AR; Okawachi Y; Levy JS; Cardenas J; Saha K; Lipson M; Gaeta AL
    Opt Lett; 2012 Mar; 37(5):875-7. PubMed ID: 22378423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Octave-spanning frequency comb generation in a silicon nitride chip.
    Okawachi Y; Saha K; Levy JS; Wen YH; Lipson M; Gaeta AL
    Opt Lett; 2011 Sep; 36(17):3398-400. PubMed ID: 21886223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origins of clustered frequency combs in Kerr microresonators.
    Sayson NLB; Pham H; Webb KE; Ng V; Trainor LS; Schwefel HGL; Coen S; Erkintalo M; Murdoch SG
    Opt Lett; 2018 Sep; 43(17):4180-4183. PubMed ID: 30160746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency comb generation by CW laser injection into a quantum-dot mode-locked laser.
    Pinkert TJ; Salumbides EJ; Tahvili MS; Ubachs W; Bente EA; Eikema KS
    Opt Express; 2012 Sep; 20(19):21357-71. PubMed ID: 23037259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs.
    Li J; Lee H; Chen T; Vahala KJ
    Phys Rev Lett; 2012 Dec; 109(23):233901. PubMed ID: 23368202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybridized Frequency Combs in Multimode Cavity Electromechanical System.
    Wu S; Liu Y; Liu Q; Wang SP; Chen Z; Li T
    Phys Rev Lett; 2022 Apr; 128(15):153901. PubMed ID: 35499901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of cavity spectrum on span in microresonator frequency combs.
    Grudinin IS; Baumgartel L; Yu N
    Opt Express; 2013 Nov; 21(22):26929-35. PubMed ID: 24216915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-noise and broadband optical frequency comb generation based on an optoelectronic oscillator.
    Xie X; Sun T; Peng H; Zhang C; Guo P; Zhu L; Hu W; Chen Z
    Opt Lett; 2014 Feb; 39(4):785-8. PubMed ID: 24562206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser.
    Juan YS; Lin FY
    Opt Express; 2009 Oct; 17(21):18596-605. PubMed ID: 20372590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-loss terahertz metamaterial from superconducting niobium nitride films.
    Zhang CH; Wu JB; Jin BB; Ji ZM; Kang L; Xu WW; Chen J; Tonouchi M; Wu PH
    Opt Express; 2012 Jan; 20(1):42-7. PubMed ID: 22274327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing coherence in microcavity frequency combs via optical pulse shaping.
    Ferdous F; Miao H; Wang PH; Leaird DE; Srinivasan K; Chen L; Aksyuk V; Weiner AM
    Opt Express; 2012 Sep; 20(19):21033-43. PubMed ID: 23037227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Octave spanning tunable frequency comb from a microresonator.
    Del'Haye P; Herr T; Gavartin E; Gorodetsky ML; Holzwarth R; Kippenberg TJ
    Phys Rev Lett; 2011 Aug; 107(6):063901. PubMed ID: 21902324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.