These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2539665)

  • 1. In vitro cyclosporine toxicity. The effect of verapamil.
    Scoble JE; Senior JC; Chan P; Varghese Z; Sweny P; Moorhead JF
    Transplantation; 1989 Apr; 47(4):647-50. PubMed ID: 2539665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-activity relationships of cyclosporines. Toxicity in cultured renal tubular epithelial cells.
    Walker RJ; Lazzaro VA; Duggin GG; Horvath JS; Tiller DJ
    Transplantation; 1989 Aug; 48(2):321-7. PubMed ID: 2756558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclosporine A-induced toxicity in two renal cell culture models (LLC-PK1 and MDCK).
    Rezzani R; Angoscini P; Borsani E; Rodella L; Bianchi R
    Histochem J; 2002; 34(1-2):27-33. PubMed ID: 12365797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for the involvement of P-glycoprotein on the extrusion of taken up L-DOPA in cyclosporine A treated LLC-PK1 cells.
    Soares-da-Silva P; Serrão MP; Vieira-Coelho MA; Pestana M
    Br J Pharmacol; 1998 Jan; 123(1):13-22. PubMed ID: 9484849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of cyclosporin A in kidney epithelial cell line (LLC-PK1).
    Takayama A; Okazaki Y; Fukuda K; Takano M; Inui K; Hori R
    J Pharmacol Exp Ther; 1991 Apr; 257(1):200-4. PubMed ID: 2019985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tubular toxicity of cyclosporine A and the influence of endothelin-1 in renal cell culture models (LLC-PK1 and MDCK).
    Zimmerhackl LB; Mesa H; Krämer F; Kölmel C; Wiegele G; Brandis M
    Pediatr Nephrol; 1997 Dec; 11(6):778-83. PubMed ID: 9438665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that calcium channel blockade prevents cyclosporine-induced exacerbation of renal ischemic injury.
    Bia MJ; Tyler K
    Transplantation; 1991 Feb; 51(2):293-5. PubMed ID: 1847248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment with verapamil and adenosine triphosphate-MgCl2 reduces cyclosporine nephrotoxicity.
    Sumpio B; Baue AE; Chaudry IH
    Surgery; 1987 Mar; 101(3):315-22. PubMed ID: 2950608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclosporine-A transport in isolated renal proximal tubular cells: inhibition by calcium channel blockers.
    Nagineni CN; Lee DB; Misra BC; Yanagawa N
    Biochem Biophys Res Commun; 1988 Dec; 157(3):1226-30. PubMed ID: 2462869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of verapamil on cellular uptake, organ distribution, and pharmacology of cyclosporine.
    McMillen MA; Baumgarten WK; Schaefer HC; Mitchnick E; Fuortes M; Holman MJ; Tesi RJ
    Transplantation; 1987 Sep; 44(3):395-401. PubMed ID: 3629688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic benefits of calcium channel blockers in cyclosporine-treated organ transplant recipients: blood pressure control and immunosuppression.
    Weir MR
    Am J Med; 1991 May; 90(5A):32S-36S. PubMed ID: 2039018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of cyclosporine A toxicity in defined cultures of renal tubule epithelia: a role for cysteine proteases.
    Wilson PD; Hartz PA
    Cell Biol Int Rep; 1991 Dec; 15(12):1243-58. PubMed ID: 1802407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of the verapamil-digoxin interaction in renal tubular cells (LLC-PK1).
    Ito S; Woodland C; Harper PA; Koren G
    Life Sci; 1993; 53(24):PL399-403. PubMed ID: 8246676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of verapamil on cephaloridine nephrotoxicity in the rabbit.
    Browning MC
    Toxicol Appl Pharmacol; 1990 May; 103(3):383-8. PubMed ID: 2339412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of calcium blockade with verapamil on experimental cyclosporine nephrotoxicity.
    Orugun EO; Smart LM; Whiting PH
    Transplant Proc; 1991 Feb; 23(1 Pt 1):354-5. PubMed ID: 1990550
    [No Abstract]   [Full Text] [Related]  

  • 16. Acute inhibition of human renal tubular cell growth by cyclosporin A.
    Blaehr H; Friis S
    Pharmacol Toxicol; 1990 Feb; 66(2):115-20. PubMed ID: 2156248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additive inhibition of afferent and efferent immunological responses of human peripheral blood mononuclear cells by verapamil and cyclosporine.
    Weir MR; Peppler R; Gomolka D; Handwerger BS
    Transplantation; 1991 Apr; 51(4):851-7. PubMed ID: 2014542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of the counteraction by calcium channel blockers of cyclosporine nephrotoxicity.
    Hammoud SH; Alkhansa S; Mahjoub N; Omar AG; El-Mas MM; Eid AA
    Am J Physiol Renal Physiol; 2018 Sep; 315(3):F572-F582. PubMed ID: 29767558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclosporin A tubular effects contribute to nephrotoxicity: role for Ca2+ and Mg2+ ions.
    Carvalho da Costa M; de Castro I; Neto AL; Ferreira AT; Burdmann EA; Yu L
    Nephrol Dial Transplant; 2003 Nov; 18(11):2262-8. PubMed ID: 14551352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new proposal for the mechanism of cyclosporine A nephrotoxicity. Inhibition of renal microsomal protein chain elongation following in vivo cyclosporine A.
    Buss WC; Stepanek J; Bennett WM
    Biochem Pharmacol; 1989 Nov; 38(22):4085-93. PubMed ID: 2597185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.